A novel population of cells that express typical immature neuronal markers including doublecortin (DCX+) has been recently identified throughout the adult cerebral cortex of relatively large mammals (guinea pig, rabbit, cat, monkey and human). These cells are more common in the associative relative to primary cortical areas and appear to develop into interneurons including type II nitrinergic neurons. Here we further describe these cells in the cerebral cortex and amygdala, in comparison with DCX+ cells in the hippocampal dentate gyrus, in three age groups of rhesus monkeys: young adult (12.3 +/- 0.2 years, n = 3), mid-age (21.2 +/- 1.9 years, n = 3) and aged (31.3 +/- 1.8 years, n = 4). DCX+ cells with a heterogeneous morphology persisted in layers II/III primarily over the associative cortex and amygdala in all groups (including in two old animals with cerebral amyloid pathology), showing a parallel decline in cell density with age across regions. In contrast to the cortex and amygdala, DCX+ cells in the subgranular zone diminished in the mid-age and aged groups. DCX+ cortical cells might arrange as long tangential migratory chains in the mid-age and aged animals, with apparently distorted cell clusters seen in the aged group. Cortical DCX+ cells colocalized commonly with polysialylated neural cell adhesion molecule and partially with neuron-specific nuclear protein and gamma-aminobutyric acid, suggesting a potential differentiation of these cells into interneuron phenotype. These data suggest a life-long role for immature interneuron-like cells in the associative cerebral cortex and amygdala in nonhuman primates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766270PMC
http://dx.doi.org/10.3389/neuro.05.017.2009DOI Listing

Publication Analysis

Top Keywords

cortex amygdala
20
cerebral cortex
16
dcx+ cells
16
+/- years
12
cells
10
associative cerebral
8
nonhuman primates
8
mid-age aged
8
cortex
6
dcx+
6

Similar Publications

Addiction to psychostimulants, including cocaine, causes widespread morbidity and mortality and is a major threat to global public health. Currently, no pharmacotherapies can successfully treat psychostimulant addiction. The neuroactive effects of cocaine and other psychostimulants have been studied extensively with respect to their modulation of monoamine systems (particularly dopamine); effects on neuropeptide systems have received less attention.

View Article and Find Full Text PDF

Zero-echo time imaging achieves whole brain activity mapping without ventral signal loss in mice.

Neuroimage

January 2025

Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan; Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Faculty of Engineering, University of Tsukuba, Tsukuba, Japan. Electronic address:

Functional MRI (fMRI) is an important tool for investigating functional networks. However, the widely used fMRI with T2*-weighted imaging in rodents has the problem of signal lack in the lateral ventral area of forebrain including the amygdala, which is essential for not only emotion but also noxious pain. Here, we scouted the zero-echo time (ZTE) sequence, which is robust to magnetic susceptibility and motion-derived artifacts, to image activation in the whole brain including the amygdala following the noxious stimulation to the hind paw.

View Article and Find Full Text PDF

Debilitating anxiety is pervasive in the modern world. Choices to approach or avoid are common in everyday life and excessive avoidance is a cardinal feature of all anxiety disorders. Here, we used intracranial EEG to define a distributed prefrontal-limbic circuit dynamics supporting approach and avoidance.

View Article and Find Full Text PDF

Neurons are highly polarized cells, with axons that may innervate distant target regions. In the brain, basal forebrain cholinergic neurons (BFCNs) possess extensive axons that project to several target regions such as the cortex, hippocampus, and amygdala, and may be exposed to a specific microenvironment in their axon targets that may have retrograde effects on neuronal health. Interestingly, BFCNs express the pan-neurotrophin receptor p75NTR throughout life while also concomitantly co-expressing all Trk receptors, making them capable of responding to both mature and precursor neurotrophins to promote survival or apoptosis, respectively.

View Article and Find Full Text PDF

Introduction: Mu-opioid receptors (MORs) are G-coupled protein receptors with a high affinity for both endogenous and exogenous opioids. MORs are widely expressed in the central nervous system (CNS), peripheral organs, and the immune system. They mediate pain and reward and have been implicated in the pathophysiology of opioid, cocaine, and other substance use disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!