Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pearl millet, a key staple crop of the semi-arid tropics, is mostly grown in water-limited conditions, and improving its performance depends on how genotypes manage limited water resources. This study investigates whether the control of water loss under non-limiting water conditions is involved in the terminal drought tolerance of pearl millet. Two pairs of tolerant x sensitive pearl millet genotypes, PRLT 2/89-33-H77/833-2 and 863B-P2-ICMB 841-P3, and near-isogenic lines (NILs), introgressed with a terminal drought tolerance quantitative trait locus (QTL) from the donor parent PRLT 2/89-33 into H77/833-2 (NILs-QTL), were tested. Upon exposure to water deficit, transpiration began to decline at lower fractions of transpirable soil water (FTSW) in tolerant than in sensitive genotypes, and NILs-QTL followed the pattern of the tolerant parents. The transpiration rate (Tr, in g water loss cm(-2) d(-1)) under well-watered conditions was lower in tolerant than in sensitive parental genotypes, and the Tr of NILs-QTL followed the pattern of the tolerant parents. In addition, Tr measured in detached leaves (g water loss cm(-2) h(-1)) from field-grown plants of the parental lines showed lower Tr values in tolerant parents. Defoliation led to an increase in Tr that was higher in sensitive than in tolerant genotypes. The differences in Tr between genotypes was not related to the stomatal density. These results demonstrate that constitutive traits controlling leaf water loss under well-watered conditions correlate with the terminal drought tolerance of pearl millet. Such traits may lead to more water being available for grain filling under terminal drought.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803210 | PMC |
http://dx.doi.org/10.1093/jxb/erp314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!