Spatial patterns of genetic variation provide information central to many ecological, evolutionary, and conservation questions. This spatial variability has traditionally been analyzed through summary statistics between pairs of populations, therefore missing the simultaneous influence of all populations. More recently, a network approach has been advocated to overcome these limitations. This network approach has been applied to a few cases limited to a single species at a time. The question remains whether similar patterns of spatial genetic variation and similar functional roles for specific patches are obtained for different species. Here we study the networks of genetic variation of four Mediterranean woody plant species inhabiting the same habitat patches in a highly fragmented forest mosaic in Southern Spain. Three of the four species show a similar pattern of genetic variation with well-defined modules or groups of patches holding genetically similar populations. These modules can be thought of as the long-sought-after, evolutionarily significant units or management units. The importance of each patch for the cohesion of the entire network, though, is quite different across species. This variation creates a tremendous challenge for the prioritization of patches to conserve the genetic variation of multispecies assemblages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768588 | PMC |
http://dx.doi.org/10.1073/pnas.0907704106 | DOI Listing |
J Int Med Res
January 2025
Divisions of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada.
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the gene, potentially disrupting lipid metabolism and leading to dyslipidemia (DLD) and steatotic liver disease (SLD). Although SLD has been described in RTT mouse models, it remains undocumented in humans. We herein describe a 24-year-old woman with RTT who was evaluated for abnormal liver enzymes.
View Article and Find Full Text PDFPLoS Pathog
January 2025
REHABS, International Research Laboratory, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George, South Africa.
Plasmodium vivax is the predominant malaria parasite in Latin America. Its colonization history in the region is rich and complex, and is still highly debated, especially about its origin(s). Our study employed cutting-edge population genomic techniques to analyze whole genome variation from 620 P.
View Article and Find Full Text PDFPLoS Genet
January 2025
Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles, France.
Gamete killers are genetic loci that distort segregation in the progeny of hybrids because the killer allele promotes the elimination of the gametes that carry the sensitive allele. They are widely distributed in eukaryotes and are important for understanding genome evolution and speciation. We had previously identified a pollen killer in hybrids between two distant natural accessions of Arabidopsis thaliana.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Rheumatology, Korea University College of Medicine, Seoul, Korea.
Objectives: This study examined the correlation between circulating receptor activator for nuclear factor-κB ligand (RANKL) levels and rheumatoid arthritis (RA), and investigated the association between polymorphisms in the RANKL gene and susceptibility to RA.
Method: We searched the Medline, Embase, and Cochrane databases for relevant publications up to September 2024. A meta-analysis was conducted to assess serum/plasma RANKL levels in patients with RA and controls, and to explore the relationship between RANKL rs9533156 and rs2277438 polymorphisms and RA susceptibility.
Gigascience
January 2025
State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Background: Plumage coloration is a distinctive trait in ducks, and the Liancheng duck, characterized by its white plumage and black beak and webbed feet, serves as an excellent subject for such studies. However, academic comprehension of the genetic mechanisms underlying duck plumage coloration remains limited. To this end, the Liancheng duck genome (GCA_039998735.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!