This study was designed to establish whether 3,3'-diindolylmethane (DIM) can inhibit cervical lesions, alter estrogen metabolism in favor of C-2 hydroxylation, and enhance immune function in the K14-HPV16 transgenic mouse model. Mice were bred, genotyped, implanted with E(2) pellets (0.25 mg/90-day release) under anesthesia, and divided into groups. Wild-type and transgenic mice were given either AIN76A diet alone or with 2,000 ppm DIM for 12 weeks. Blood and reproductive tracts were obtained. Blood was analyzed for estrogen metabolites and IFN-gamma. The cervical transformation zone was sectioned and stained for histology. Estradiol C-2 hydroxylation and serum IFN-gamma levels were significantly increased over controls in wild-type and transgenic mice receiving DIM. In wild-type mice without DIM, hyperplasia of the squamous epithelium was observed. Wild-type mice fed DIM displayed a normal thin epithelium. In transgenic mice without DIM, epithelial cell projections into the stroma (papillae) were present. An additional degree of nuclear anaplasia in the stratum espinosum was observed. Dysplastic cells were present. Transgenic mice fed DIM displayed some mild hyperplasia of the squamous epithelium. DIM increases estrogen C-2 hydroxylation in this model. Serum INF-gamma was increased, indicating increased immune response in the DIM-fed animals. Histopathology showed a marked decrease in cervical dsyplasia in both wild-type and transgenic mice, indicating that DIM delays or inhibits the progression from cervical dysplasia to cervical cancer. Using the K14-HPV16 transgenic mouse model, we have shown that DIM inhibits the development of E6/E7 oncogene-induced cervical lesions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783856 | PMC |
http://dx.doi.org/10.1158/1055-9965.EPI-09-0698 | DOI Listing |
Liver Int
February 2025
Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
Background And Aims: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterised by progressive biliary inflammation and fibrosis, leading to liver cirrhosis and cholangiocarcinoma. GPBAR1 (TGR5) is a G protein-coupled receptor for secondary bile acids. In this study, we have examined the therapeutic potential of BAR501, a selective GPBAR1 agonist in a PSC model.
View Article and Find Full Text PDFOncoimmunology
December 2025
Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore.
Tumor-promoting inflammation significantly impacts cancer progression, and targeting inflammatory cytokines has emerged as a promising therapeutic approach in clinical trials. Interleukin (IL)-1α, a member of the IL-1 cytokine family, plays a crucial role in both inflammation and carcinogenesis. How IL-1α is secreted in the tumor microenvironment has been poorly understood, and we previously showed that calpain 1 cleaves pro-IL-1α for mature IL-1α secretion, which exacerbates hepatocellular carcinoma by recruiting myeloid-derived suppressor cells.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Institute for Physiology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.
Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).
Genetic medicines, including CRISPR/Cas technologies, extend tremendous promise for addressing unmet medical need in inherited retinal disorders and other indications; however, there remain challenges for the development of therapeutics. Herein, we evaluate genome editing by engineered Cas9 ribonucleoproteins (eRNP) in vivo via subretinal administration using mouse and pig animal models. Subretinal administration of adenine base editor and double strand break-inducing Cas9 nuclease eRNPs mediate genome editing in both species.
View Article and Find Full Text PDFIntroduction: In USA, six million individuals with Sub-Saharan ancestry carry two high-risk variants, which increase the risk for kidney diseases. Whether APOL1 high-risk variants are independent risk factors for cardiovascular diseases is unclear and requires further investigation.
Methods: We characterized a mouse model to investigate the role of APOL1 in dyslipidemia and cardiovascular diseases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!