Free energy calculation of modified base-pair formation in explicit solvent: A predictive model.

RNA

Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, USA.

Published: December 2009

The maturation of RNAs includes site-specific post-transcriptional modifications that contribute significantly to hydrogen bond formation within RNA and between different RNAs, especially in formation of mismatch base pairs. Thus, an understanding of the geometry and strength of the base-pairing of modified ribonucleoside 5'-monophosphates, previously not defined, is applicable to investigations of RNA structure and function and of the design of novel RNAs. The geometry and free energies of base-pairings were calculated in aqueous solution under neutral conditions with AMBER force fields and molecular dynamics simulations (MDSs). For example, unmodified uridines were observed to bind to uridine and cytidine with significant stability, but the ribose C1'-C1' distances were far short ( approximately 8.9 A) of distances observed for canonical A-form RNA helices. In contrast, 5-oxyacetic acid uridine, known to bind adenosine, wobble to guanosine, and form mismatch base pairs with uridine and cytidine, bound adenosine and guanosine with geometries and energies comparable to an unmodified uridine. However, the 5-oxyacetic acid uridine base paired to uridine and cytidine with a C1'-C1' distance comparable to that of an A-form helix, approximately 11 A, when a H(2)O molecule migrated between and stably hydrogen bonded to both bases. Even in formation of canonical base pairs, intermediate structures with a second energy minimum consisted of transient H(2)O molecules forming hydrogen bonded bridges between the two bases. Thus, MDS is predictive of the effects of modifications, H(2)O molecule intervention in the formation of base-pair geometry, and energies that are important for native RNA structure and function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779691PMC
http://dx.doi.org/10.1261/rna.1734309DOI Listing

Publication Analysis

Top Keywords

base pairs
12
uridine cytidine
12
mismatch base
8
rna structure
8
structure function
8
5-oxyacetic acid
8
acid uridine
8
h2o molecule
8
hydrogen bonded
8
uridine
6

Similar Publications

Purpose: This work described a new species of Ceratomyxa, based on morphological and phylogenetic analyzes of myxospores collected from the gallbladder of the fish Astyanax mexicanus.

Methods: Sixty-two specimens were captured, between December 2022 and February 2024, in the Flexal River, in the community of Tessalônica, state of Amapá. The specimens were transported alive to the Laboratory of Morphophysiology and Animal Health, at the State University of Amapá, where the studies were carried out.

View Article and Find Full Text PDF

CellREADR: An ADAR-based RNA sensor-actuator device.

Methods Enzymol

January 2025

Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States. Electronic address:

RNAs are central mediators of genetic information flow and gene regulation that underlie diverse cell types and cell states across species. Thus, methods that can sense and respond to RNA profiles in living cells will have broad applications in biology and medicine. CellREADR - Cell access through RNA sensing by Endogenous ADAR (adenosine deaminase acting on RNA), is a programmable RNA sensor-actuator technology that couples the detection of a cell-defining RNA to the translation of an effector protein to monitor and manipulate the cell.

View Article and Find Full Text PDF

sp. nov., isolated from tree bark ( Chev.) and its antioxidant activity.

Int J Syst Evol Microbiol

January 2025

Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.

A Gram-stain-positive, facultatively anaerobic, rod-shaped strain, designated SPB1-3, was isolated from tree bark. This strain exhibited heterofermentative production of dl-lactic acid from glucose. Optimal growth was observed at 25-40 °C, pH 4.

View Article and Find Full Text PDF

Post-transcriptional regulation of aromatic amino acid metabolism by GcvB small RNA in .

Microbiol Spectr

January 2025

Department of Infection Biology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.

synthesizes aromatic amino acids (AAAs) through the common pathway to produce the precursor, chorismate, and the three terminal pathways to convert chorismate into Phe, Tyr, and Trp. also imports exogenous AAAs through five transporters. GcvB small RNA post-transcriptionally regulates more than 50 genes involved in amino acid uptake and biosynthesis in , but the full extent of GcvB regulon is still underestimated.

View Article and Find Full Text PDF

Accurate drug-target binding affinity (DTA) prediction is crucial in drug discovery. Recently, deep learning methods for DTA prediction have made significant progress. However, there are still two challenges: (1) recent models always ignore the correlations in drug and target data in the drug/target representation process and (2) the interaction learning of drug-target pairs always is by simple concatenation, which is insufficient to explore their fusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!