A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mononuclear iron complexes relevant to nonheme iron oxygenases. Synthesis, characterizations and reactivity of Fe-Oxo and Fe-Peroxo intermediates. | LitMetric

Mononuclear iron complexes relevant to nonheme iron oxygenases. Synthesis, characterizations and reactivity of Fe-Oxo and Fe-Peroxo intermediates.

Dalton Trans

Institut de Chimie Moléculaire et des Matériaux d'Orsay, Laboratoire de Chimie Inorganique, Université Paris Sud 11, 91405, Orsay Cedex, France.

Published: November 2009

The new ligand L(6)(2)4E (N,N,N',N'-tetrakis(5-ethyl-2-pyridylmethyl)ethane-1,2-diamine) was designed as a more robust analog of TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine) for which the ability at stabilizing high valent Fe-Oxo and Fe-(hydro)peroxo has been reported. With respect to the latter, the pyridyl beta-substituents in L(6)(2)4E do not modify the Fe coordination chemistry. From the Fe(II) precursor, [FeO](2+) and Fe(III)-(hydro)peroxo intermediates are prepared using the same synthetic methods as those reported for the TPEN analogs. The spectroscopic characteristics of all L(6)(2)4E-Fe complexes are very similar to their TPEN analog. However, [(L(6)(2)4E)FeO](2+) has a greater lifetime than that of [(TPEN)FeO](2+). This can be explained by a restricted bimolecular autodegradation due to the bulkiness provided by the ethyl substituents. Regarding small organic molecule oxidation, [(L(6)(2)4E)FeO](2+) and [(L(6)(2)4E)FeOOH](2+) exhibit behaviours that seem to be general for the complexes built with ligands of the TPEN family: [FeO](2+) appears to be efficient to epoxidize olefins, whereas [FeOOH](2+) hydroxylates the aromatic ring of anisole with efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b913470kDOI Listing

Publication Analysis

Top Keywords

mononuclear iron
4
iron complexes
4
complexes relevant
4
relevant nonheme
4
nonheme iron
4
iron oxygenases
4
oxygenases synthesis
4
synthesis characterizations
4
characterizations reactivity
4
reactivity fe-oxo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!