We show that, as the conjugation length of poly(p-phenylenevinylene) increases, the ratio of its two-photon absorption coeff icient to third-order nonlinearity at 800 nm decreases, rendering the material suitable for alloptical switching.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.20.001241DOI Listing

Publication Analysis

Top Keywords

tuning properties
4
properties polyp-phenylenevinylene
4
polyp-phenylenevinylene all-optical
4
all-optical switching
4
switching conjugation
4
conjugation length
4
length polyp-phenylenevinylene
4
polyp-phenylenevinylene increases
4
increases ratio
4
ratio two-photon
4

Similar Publications

Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.

View Article and Find Full Text PDF

Tuning Fork Scanning Electrochemical Cell Microscopy for Resolving Morphological and Redox Properties of Single Ag Nanowires.

J Phys Chem Lett

January 2025

Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States.

We report a Tuning Fork Scanning Electrochemical Cell Microscopy (TF-SECCM) technique for providing morphological and electrochemical information on single redox-active entities. This new operation configuration of SECCM utilizes an electrolyte-filled nanopipette tip mounted onto a tuning fork force sensor to obtain a precise tip-sample distance control and surface morphological mapping capabilities. Redox activities of regions of interest (ROIs) can be investigated by scanning electrode potential by moving the nanopipette to any target regions while maintaining the constant force engagement of the tip with the sample.

View Article and Find Full Text PDF

Background: Dosimetric commissioning and quality assurance (QA) for linear accelerators (LINACs) present a significant challenge for clinical physicists due to the high measurement workload and stringent precision standards. This challenge is exacerbated for radiosurgery LINACs because of increased measurement uncertainty and more demanding setup accuracy for small-field beams. Optimizing physicists' effort during beam measurements while ensuring the quality of the measured data is crucial for clinical efficiency and patient safety.

View Article and Find Full Text PDF

Recent advances in research on biomass-based food packaging film materials.

Compr Rev Food Sci Food Saf

January 2025

College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China.

Although traditional petroleum-based packaging materials pose environmental problems, biodegradable packaging materials have attracted extensive attention from research and industry for their environmentally friendly properties. Bio-based films, as an alternative to petroleum-based packaging films, demonstrate their significant advantages in terms of environmental friendliness and resource sustainability. This paper provides an insight into the development of biomass food packaging films such as cellulose, starch, chitosan, and gelatine, including their properties, methods of preparation (e.

View Article and Find Full Text PDF

Nonplanar (butterfly-shaped) phenothiazine () and its derivative's () photophysical and spectral properties have been tuned by varying the solvents and their polarity and investigated employing spectroscopic techniques such as UV-Vis, steady-state and time-resolved fluorescence, and TDDFT calculations. The UV-Vis absorption studies and TDDFT calculations reveal two distinct bands for both compounds: a strong π-π* transition at shorter wavelengths and a weaker -π* transition, which displays a little bathochromic shift in polar solvents. The detailed emission studies reveal that such dual emission is a result of the photoinduced excited-state conjugation enhancement (ESCE) process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!