Methicillin-resistant Staphylococcus aureus (MRSA) infections are complicated by the ability of the organism to grow in surface-adhered biofilms on a multitude of abiotic and biological surfaces. These multicellular communities are notoriously difficult to eradicate with antimicrobial therapy. Cells within the biofilm may be exposed to a sublethal concentration of the antimicrobial due to the metabolic and phenotypic diversity of the biofilm-associated cells or the protection offered by the biofilm structure. In the present study, the influence of a sublethal concentration of tigecycline on biofilms formed by an epidemic MRSA-16 isolate was investigated by transcriptome analysis. In the presence of the drug, 309 genes were upregulated and 213 genes were downregulated by more than twofold in comparison to the levels of gene regulation detected for the controls not grown in the presence of the drug. Microarray data were validated by real-time reverse transcription-PCR and phenotypic assays. Tigecycline altered the expression of a number of genes encoding proteins considered to be crucial for the virulence of S. aureus. These included the reduced expression of icaC, which is involved in polysaccharide intercellular adhesin production and biofilm development; the upregulation of fnbA, clfB, and cna, which encode adhesins which attach to human proteins; and the downregulation of the cap genes, which mediate the synthesis of the capsule polysaccharide. The expression of tst, which encodes toxic shock syndrome toxin 1 (TSST-1), was also significantly reduced; and an assay performed to quantify TSST-1 showed that the level of toxin production by cells treated with tigecycline decreased by 10-fold (P < 0.001) compared to the level of production by untreated control cells. This study suggests that tigecycline may reduce the expression of important virulence factors in S. aureus and supports further investigation to determine whether it could be a useful adjunct to therapy for the treatment of biofilm-mediated infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798542 | PMC |
http://dx.doi.org/10.1128/AAC.00155-09 | DOI Listing |
Mol Plant Pathol
January 2025
Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
Tomato yellow leaf curl Guangdong virus (TYLCGdV), a monopartite begomovirus first identified in 2004, remains poorly characterised. In this study, we demonstrate that TYLCGdV associates with a betasatellite, TYLCGdB, and the βC1 protein encoded by TYLCGdB is essential for symptom development. We also explore the role of TYLCGdV C4 protein by generating a C4-deficient infectious clone (TYLCGdV), revealing a dynamic role for TYLCGdV C4.
View Article and Find Full Text PDFJ Inflamm (Lond)
January 2025
Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
Clostridioides difficile, a spore-forming anaerobic bacterium, is the primary cause of hospital antibiotic-associated diarrhea. Key virulence factors, toxins A (TcdA) and B (TcdB), significantly contribute to C. difficile infection (CDI).
View Article and Find Full Text PDFBMC Microbiol
January 2025
The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
The emergence and prevalence of hypervirulent Klebsiella pneumoniae (hvKP) have proposed a great challenge to control this infection. Therefore, exploring some new drugs or strategies for treating hvKP infection is an urgent issue for scientific researchers. In the present study, the clpV gene deletion strain of hvKP (ΔclpV-hvKP) was constructed using CRISPR-Cas9 technology, and the biological characteristics of ΔclpV-hvKP were investigated to explore the new targets for controlling this pathogen.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
Background: Root rot is a major disease affecting alfalfa (Medicago sativa L.), causing significant yield losses and economic damage. The primary pathogens include Fusarium spp.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China.
Autosomal dominant deafness-15 which is caused by mutation in the POU4F3 gene, has been reported with a wide degree of clinical heterogeneity, even between intrafamilial members. However, the reason is still elusive. In this study, A four-generation Chinese family with 11 patients manifesting late-onset progressive non-syndromic hearing loss was recruited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!