The signaling mechanisms facilitating cardiomyocyte (CM) differentiation from bone marrow (BM)-derived mesenchymal stem cells (MSCs) are not well understood. 5-Azacytidine (5-Aza), a DNA demethylating agent, induces expression of cardiac-specific genes, such as Nkx2.5 and alpha-MHC, in mouse BM-derived MSCs. 5-Aza treatment caused significant up-regulation of glycogen synthase kinase (GSK)-3beta and down-regulation of beta-catenin, whereas it stimulated GSK-3alpha expression only modestly. The promoter region of GSK-3beta was heavily methylated in control MSCs, but was demethylated by 5-Aza. Although overexpression of GSK-3beta potently induced CM differentiation, that of GSK-3alpha induced markers of neuronal and chondrocyte differentiation. GSK-3 inhibitors, including LiCl, SB 216743, and BIO, abolished 5-Aza-induced up-regulation of CM-specific genes, suggesting that GSK-3 is necessary and sufficient for CM differentiation in MSCs. Although specific knockdown of endogenous GSK-3beta abolished 5-Aza-induced expression of cardiac specific genes, surprisingly, that of GSK-3alpha facilitated CM differentiation in MSCs. Although GSK-3beta is found in both the cytosol and nucleus in MSCs, GSK-3alpha is localized primarily in the nucleus. Nuclear-specific overexpression of GSK-3beta failed to stimulate CM differentiation. Down-regulation of beta-catenin mediates GSK-3beta-induced CM differentiation in MSCs, whereas up-regulation of c-Jun plays an important role in mediating CM differentiation induced by GSK-3alpha knockdown. These results suggest that GSK-3alpha and GSK-3beta have distinct roles in regulating CM differentiation in BM-derived MSCs. GSK-3beta in the cytosol induces CM differentiation of MSCs through down-regulation of beta-catenin. In contrast, GSK-3alpha in the nucleus inhibits CM differentiation through down-regulation of c-Jun.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794779 | PMC |
http://dx.doi.org/10.1074/jbc.M109.019109 | DOI Listing |
Adv Healthc Mater
January 2025
Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
Spinal cord injury (SCI) leads to acute tissue damage that disrupts the microenvironmental homeostasis of the spinal cord, inhibiting cell survival and function, and thereby undermining treatment efficacy. Traditional stem cell therapies have limited success in SCI, due to the difficulties in maintaining cell survival and inducing sustained differentiation into neural lineages. A new solution may arise from controlling the fate of stem cells by creating an appropriate mechanical microenvironment.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45220, Jalisco, Mexico.
Olfactory ensheathing cells (OECs) and mesenchymal stem cells (MSCs) differentiated towards Schwann-like have plasticity properties. These cells express the Glial fibrillary acidic protein (GFAP), a type of cytoskeletal protein that significantly regulates many cellular functions, including those that promote cellular plasticity needed for regeneration. However, the expression of GFAP isoforms (α, β, and δ) in these cells has not been characterized.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
Spheroids, as three-dimensional (3D) cell aggregates, can be prepared using various methods, including hanging drops, microwells, microfluidics, magnetic manipulation, and bioreactors. However, current spheroid manufacturing techniques face challenges such as complex workflows, the need for specialized personnel, and poor batch reproducibility. In this study, we designed a support-free, 3D-printed microwell chip and developed a compatible low-cell-adhesion process.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
The surface topography and chemistry of titanium-aluminum-vanadium (Ti6Al4V) implants play critical roles in the osteoblast differentiation of human bone marrow stromal cells (MSCs) and the creation of an osteogenic microenvironment. To assess the effects of a microscale/nanoscale (MN) topography, this study compared the effects of MN-modified, anodized, and smooth Ti6Al4V surfaces on MSC response, and for the first time, directly contrasted MN-induced osteoblast differentiation with culture on tissue culture polystyrene (TCPS) in osteogenic medium (OM). Surface characterization revealed distinct differences in microroughness, composition, and topography among the Ti6Al4V substrates.
View Article and Find Full Text PDFCells
January 2025
The Laboratory for the Bioengineering of Tissues (BioTis U1026), National Institute of Health and Medical Research (INSERM), Université de Bordeaux, F-33000 Bordeaux, France.
SCAPs (Stem Cells from Apical Papilla), derived from the apex of forming wisdom teeth, extracted from teenagers for orthodontic reasons, belong to the MSCs (Mesenchymal Stromal Cells) family. They have multipotent differentiation capabilities and are a potentially powerful model for investigating strategies of clinical cell therapies. Since autophagy-a regulated self-eating process-was proposed to be essential in osteogenesis, we investigated its involvement in the SCAP model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!