A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design features of a three-dimensional molar crown and related maximum principal stress. A finite element model study. | LitMetric

Objective: To evaluate the effects of clinically relevant variables on the maximum principal stress (MPS) in the veneer layer of an anatomically correct veneer-core-cement-tooth model.

Methods: The average dimensions of a mandibular first molar crown were imported into CAD software; a tooth preparation was modeled by reducing the proximal walls by 1.5 mm and the occlusal surface by 2.0 mm. 'Crown systems' were composed by varying characteristics of a cement layer, structural core, and veneer solid, all designed to fit the tooth preparation. The main and interacting effects of proximal wall height reduction, core material, core thickness, cement modulus, cement thickness, and load position on the maximum stress distribution were derived from a series of finite element models and analyzed in a factorial analysis of variance.

Results: The average MPS in the veneer layer over the 64 models was 488 MPa (range = 248-840 MPa). MPS increased significantly with the addition of horizontal load components and with increasing cement thickness. In addition, MPS levels varied as a function of interactions between: proximal wall height reduction and load position; load position and cement thickness; core thickness and cement thickness; cement thickness and proximal wall height reduction; and core thickness, cement thickness and proximal wall height reduction.

Conclusion: Rational design of veneered structural ceramics must consider the complex geometry of the crown-tooth system and integrate the influence of both the main effects and interactions among design parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2814981PMC
http://dx.doi.org/10.1016/j.dental.2009.09.009DOI Listing

Publication Analysis

Top Keywords

cement thickness
24
proximal wall
16
wall height
16
thickness cement
16
height reduction
12
core thickness
12
load position
12
thickness
9
molar crown
8
maximum principal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!