As a major therapy for hepatitis B virus (HBV) infection, Interferon alpha (IFN-alpha) triggers intracellular signal transduction including JAK-STAT pathway to produce various antiviral effector mechanisms. However, patients with chronic hepatitis B usually show low response to IFN-alpha treatment and the underlying mechanism remains unclear. In the present study, HepG2 and HepG2.2.15 cells were used to examine the Type I IFN receptors expression, phosphorylation and methylation of STAT1. STAT1-PIAS1 interaction in cells was tested by protein co-immunoprecipitation. The potential improvement of S-adenosylmethionine (SAM) in the antiviral effect of IFN-alpha was also investigated. Our data demonstrated that both chains of the Type I IFN receptors were expressed for a much higher extent in HepG2.2.15 cells than in HepG2 cells. HBV inhibited dramatically the methylation rather than the phosphorylation of STAT1, which was consistent with an increased STAT1-PIAS1 interaction. Combined with IFN-alpha, SAM treatment effectively improved STAT1 methylation and attenuated STAT1-PIAS1 binding, followed by increased PKR and 2',5'-OAS mRNA expression, thus significantly reducing the HBsAg, HBeAg protein levels and HBV DNA load in the supernatant of HepG2.2.15 cells. Less STAT1 methylation and subsequent increased STAT1-PIAS1 interaction are involved in the mechanism of the IFN-alpha-antagonistic activity of HBV. By improving STAT1 methylation, SAM can enhance the antiviral effect of IFN-alpha.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.antiviral.2009.10.011 | DOI Listing |
Nature
January 2025
Columbia Center for Genetic Errors of Immunity, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
J Inflamm Res
December 2024
Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Purpose: Septic cardiomyopathy (SCM) is a significant global public health concern characterized by substantial morbidity and mortality, which has not been improved for decades due to lack of early diagnosis and effective therapies. This study aimed to identify hub biomarkers in SCM and explore their potential mechanisms.
Methods: We utilized the GSE53007 and GSE207363 datasets for transcriptome analysis of normal and SCM mice.
Vet Res
November 2024
Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China.
Infectious bronchitis virus (IBV) is the causative agent of infectious bronchitis (IB), a severe disease that primarily affects young chickens and poses a significant challenge to the global poultry industry. Understanding the complex interaction between the virus and its host is vital for developing innovative antiviral strategies. Long non-coding RNA (lncRNA) plays a crucial role in regulating host antiviral immune responses.
View Article and Find Full Text PDFClin Epigenetics
November 2024
Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA.
Biomolecules
October 2024
Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany.
The human skin, the body's largest organ, undergoes continuous renewal but is significantly impacted by aging, which impairs its function and leads to visible changes. This study aimed to identify botanical compounds that mimic the anti-aging effects of baricitinib, a known JAK1/2 inhibitor. Through in silico screening of a botanical compound library, 14 potential candidates were identified, and 7 were further analyzed for their effects on cellular aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!