Dynasore, a dynamin inhibitor, suppresses lamellipodia formation and cancer cell invasion by destabilizing actin filaments.

Biochem Biophys Res Commun

Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-Cho, Kita-ku, Okayama 700-8558, Japan.

Published: December 2009

Dynamic remodeling of actin filaments are bases for a variety of cellular events including cell motility and cancer invasion, and the regulation of actin dynamics implies dynamin, well characterized endocytotic protein. Here we report that dynasore, a inhibitor of dynamin GTPase, potently destabilizes F-actin in vitro, and it severely inhibits the formation of pseudopodia and cancer cell invasion, both of which are supported by active F-actin formation. Dynasore rapidly disrupted F-actin formed in brain cytosol in vitro, and the dynasore's effect on F-actin was indirect. Dynasore significantly suppressed serum-induced lamellipodia formation in U2OS cell. Dynasore also destabilized F-actin in resting cells, which caused the retraction of the plasma membrane. A certain amount of dynamin 2 in U2OS cells localized along F-actin, and co-localized with cortactin, a physiological binding partner of dynamin and F-actin. However, these associations of dynamin were partially disrupted by dynasore treatment. Furthermore, invasion activity of H1080 cell, a lung cancer cell line, was suppressed by approximately 40% with dynasore treatment. These results strongly suggest that dynasore potently destabilizes F-actin, and the effect implies dynamin. Dynasore or its derivative would be suitable candidates as potent anti-cancer drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2009.10.105DOI Listing

Publication Analysis

Top Keywords

cancer cell
12
dynasore
9
lamellipodia formation
8
cell invasion
8
actin filaments
8
implies dynamin
8
potently destabilizes
8
f-actin
8
destabilizes f-actin
8
dynasore treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!