The fine specificity of antibodies is important for their discriminating powers during diagnostics and in vivo therapy. We have attempted to isolate human scFv antibodies to the oncofetal antigen, the placental isozyme of alkaline phosphatase (PLAP) in which it is important to distinguish between the closely related intestinal alkaline phosphatase (IAP) and bone alkaline phosphatase (BAP) isozymes. As the antibodies are selected in the phage displayed form and might be finally used as different entities, including the soluble scFv form, it may be important to look at the influence of scaffolds in determining specificity. There have been earlier reports of the role of the constant region and other scaffolding proteins in determining specificity. In this paper, we report isolation of one such clone, E6, which showed specificity to PLAP in phage antibody form but lost the specificity when soluble scFv was tested for same, and showed partial cross reactivity to BAP. We suggest that the altered specificity of scFv might be the result of loss of phage pIII scaffold, which is present in phage-displayed antibody and may help the displayed antibody to assume specific conformational structure, which may govern binding characteristics of the same.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/hyb.2009.0008 | DOI Listing |
J Cancer
January 2025
Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China.
Lung cancer is one of the most harmful cancers in the world, endangering the lives and health of many people. Although there are various methods to treat lung cancer at present, but lung cancer is asymptomatic in the early stages and has a high recurrence rate after late treatment which make it difficult to cure with conventional treatments. Drug combinations for the treatment of lung cancer have been used in many clinical studies.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
The lengthy period of external fixation for bone consolidation increases the risk of complications during distraction osteogenesis (DO). Both pro-angiogenic and osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) contribute to bone regeneration during DO. The underlying mechanism of Schwann cells (SCs) in promoting bone regeneration during DO remains poorly understood.
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
January 2025
Department of Implantology, Stomatological Hospital and Dental School, Tongji University & Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai200072, China.
J Dent
December 2024
Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. Electronic address:
Objectives: To evaluate the multifunctionality of silver-copper co-loaded mesoporous bioactive glass (MBG), with the goal of developing an advanced pulp-capping material.
Methods: The synthesis of materials was conducted using the sol-gel method, following the approach described in previous studies but with some modifications. The composition included 80 mol% SiO₂, 15 mol% CaO, and 5 mol% P₂O₅, with additional components of 5 mol% silver, 5 mol% copper, or 1 mol% silver combined with 4 mol% copper, designated as Ag5/80S, Cu5/80S, or Ag1Cu4/80S, respectively.
Chem Biol Interact
December 2024
Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou 646000, Sichuan, China. Electronic address:
Oxidative stress (OS) inhibits the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). Equol (Eq), a phytoestrogen, exhibits notable antioxidant properties and potential for preventing osteoporosis. However, the research on the regulatory effects of Eq on stem cell osteogenesis remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!