Theoretical and experimental methods were integrated to investigate the structures of H(+)(CH(3)OH)(m)(H(2)O)(n) clusters for m + n = 5 and 6. An effective theoretical approach is presented to search for extensive sets of structural isomers using an empirical model and substitution schemes. Stable isomers were then reoptimized by the B3LYP level of computations with the 6-31+G* basis set. Canonical averages of these structural isomers were analyzed by harmonic superposition approximation (HSA) to study their finite temperature behavior and enable quantitative comparisons with experimental results. Thermal energy is found to have a significant effect on the structure of these clusters. Our calculations show that cyclic isomers are preferred at low temperature, while linear and tree forms become more favorable at high temperature (>200 K). Furthermore, we found that proton can reside on both water and methanol ion cores and the proton switch is associated with morphology change. Experimental IR spectra in the free OH stretching region were also obtained and compared with calculated spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp9082689DOI Listing

Publication Analysis

Top Keywords

proton switch
8
structural isomers
8
comprehensive analysis
4
analysis structure
4
structure proton
4
switch ch3ohmh2on
4
ch3ohmh2on theoretical
4
theoretical experimental
4
experimental methods
4
methods integrated
4

Similar Publications

Many important processes in cells depend on the transfer of protons through water wires embedded in transmembrane proteins. Herein, we have performed more than 55 μs all-atom simulations of the light-harvesting complex of a diatom, i.e.

View Article and Find Full Text PDF

we evaluated regression models based on quantitative ultrasound (QUS) parameters and compared them with a vendor-provided method for calculating the ultrasound fat fraction (USFF) in metabolic dysfunction-associated steatotic liver disease (MASLD). We measured the attenuation coefficient (AC) and the backscatter-distribution coefficient (BSC-D) and determined the USFF during a liver ultrasound and calculated the magnetic resonance imaging proton-density fat fraction (MRI-PDFF) and steatosis grade (S0-S4) in a combined retrospective-prospective cohort. We trained multiple models using single or various QUS parameters as independent variables to forecast MRI-PDFF.

View Article and Find Full Text PDF

Visible light-driven pyridoxal radical biocatalysis has emerged as a new strategy for the stereoselective synthesis of valuable noncanonical amino acids in a protecting-group-free fashion. In our previously developed dehydroxylative C-C coupling using engineered PLP-dependent tryptophan synthases, an enzyme-controlled unusual α-stereochemistry reversal and pH-controlled enantiopreference were observed. Herein, through high-throughput photobiocatalysis, we evolved a set of stereochemically complementary PLP radical enzymes, allowing the synthesis of both l- and d-amino acids with enhanced enantiocontrol across a broad pH window.

View Article and Find Full Text PDF

Switching CO2 Electroreduction toward C2+ Products and CH4 by Regulate the Protonation and Dimerization in Platinum/Copper Catalysts.

Angew Chem Int Ed Engl

January 2025

Beijing Institute of Technology, Research Center of Materials Science, School of Materials Science and Engineering, No.5 South Street of Zhongguancun, Haidian District, 100081, Beijing, CHINA.

Copper (Cu)-based catalysts exhibit distinctive performance in the electrochemical CO2 reduction reaction (CO2RR) with complex mechanism and sophisticated types of products. The management of key intermediates *CO and *H is a necessary factor for achieving high product selectivity, but lack of efficient and versatile strategies. Herein, we designed Pt modified Cu catalysts to effectively modulate the competitive coverage of those intermediates.

View Article and Find Full Text PDF

Spin State Modulation with Oxygen Vacancy Orientates C/N Intermediates for Urea Electrosynthesis of Ultrahigh Efficiency.

Adv Mater

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.

The co-electrolysis of CO and NO to synthesize urea has become an effective pathway to alternate the conventional Bosch-Meiser process, while the complexity of C-/N-containing intermediates for C-N coupling results in the urea electrosynthesis of unsatisfactory efficiency. In this work, an electronic spin state modulation maneuver with oxygen vacancies (Ov) is unveiled to effectively meliorate the oriented generation of key intermediates NH and CO for C-N coupling, furnishing urea in ultrahigh yield of 2175.47 µg mg h and Faraday efficiency of 70.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!