Background: Dietary lipids are directly related to the composition of adipose tissue, aetiology of obesity and arousal of obesity-related pathologies, like chronic inflammation states. Haptoglobin is an acute phase protein secreted by the liver and white adipose tissue, and its blood levels vary according to the volume of fat in the body.

Aim Of The Study: To investigate the effect of diets enriched with large amounts of dietary fats, which differ in their fatty acid composition, on the haptoglobin gene expression by visceral and subcutaneous adipose tissue of mice fed for 2 days or 8 weeks. 3T3-L1 cells were treated with fatty acids that are found in those types of dietary fats.

Methods: Mice were treated acutely (for 2 days) or chronically (for 8 weeks) with diets enriched with soybean oil, fish oil, coconut oil or lard. 3T3-L1 cells were treated with six different fatty acids. Haptoglobin gene expression was quantified by northern blotting.

Results: Both chronic and acute treatment with lard, which is rich in long chain saturated fatty acids, increased the haptoglobin mRNA expression in the retroperitoneal and epidydimal white adipose tissues. Chronic treatment with coconut oil, which is rich in medium chain saturated fatty acids, increased the haptoglobin expression in the epidydimal and subcutaneous depots. In 3T3-L1, palmitic acid increased the haptoglobin gene expression.

Conclusion: The type of lipids in the diet can differently modulate the white adipose tissue gene expression of haptoglobin, and saturated fatty acids play a major role in promoting a pro-inflammatory environment. This response is fat pad specific and dependant on the duration of treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00394-009-0069-zDOI Listing

Publication Analysis

Top Keywords

fatty acids
24
adipose tissue
20
saturated fatty
16
haptoglobin gene
16
gene expression
16
chain saturated
12
3t3-l1 cells
12
white adipose
12
increased haptoglobin
12
long chain
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!