Soybean [Glycine max (L.) Merr.] cultivars varied in their resistance to different populations of the soybean cyst nematode (SCN), Heterodera glycines, called HG Types. The rhg1 locus on linkage group G was necessary for resistance to all HG types. However, the loci for resistance to H. glycines HG Type 1.3- (race 14) and HG Type 1.2.5- (race 2) of the soybean cyst nematode have varied in their reported locations. The aims were to compare the inheritance of resistance to three nematode HG Types in a population segregating for resistance to SCN and to identify the underlying quantitative trait loci (QTL). 'Hartwig', a soybean cultivar resistant to most SCN HG Types, was crossed with the susceptible cultivar 'Flyer'. A total of 92 F5-derived recombinant inbred lines (RILs; or inbred lines) and 144 molecular markers were used for map development. The rhg1 associated QTL found in earlier studies were confirmed and shown to underlie resistance to all three HG Types in RILs (Satt309; HG Type 0, P = 0.0001 R (2) = 22%; Satt275; HG Type 1.3, P = 0.001, R (2) = 14%) and near isogeneic lines (NILs; or iso-lines; Satt309; HG Type 1.2.5-, P = 0.001 R (2) = 24%). A new QTL underlying resistance to HG Type 1.2.5- was detected on LG D2 (Satt574; P = 0.001, R (2) = 11%) among 14 RILs resistant to the other HG types. The locus was confirmed in a small NIL population consisting of 60 plants of ten genotypes (P = 0.04). This QTL (cqSCN-005) is located in an interval previously associated with resistance to both SDS leaf scorch from 'Pyramid' and 'Ripley' (cqSDS-001) and SCN HG Type 1.3- from Hartwig and Pyramid. The QTL detected will allow marker assisted selection for multigenic resistance to complex nematode populations in combination with sudden death syndrome resistance (SDS) and other agronomic traits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-009-1181-4 | DOI Listing |
Int J Mol Sci
January 2025
Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA.
Breast cancer treatment has advanced significantly, particularly for estrogen receptor-positive (ER+) tumors. Tamoxifen, an estrogen antagonist, is widely used; however, approximately 40% of patients develop resistance. Recent studies indicate that microRNAs, especially miR-155, play a critical role in this resistance.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China.
Soybean cyst nematode (SCN, Heterodera glycines) is a major pathogen harmful to soybean all over the world, causing huge yield loss every year. Soybean resistance to SCN is a complex quantitative trait controlled by a small number of major genes (rhg1 and Rhg4) and multiple micro-effect genes. Therefore, the continuous identification of new resistant lines and genes is needed for the sustainable development of global soybean production.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.
Soybean cyst nematode (SCN, ) is a devastating pest affecting soybean production worldwide. Host resistance is one of the primary practices used to manage SCN. The locus contributes to the strong and effective SCN resistance, with resistance levels predominantly governed by copy number variations (CNVs) and, to lesser extent, sequence variations.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China.
ACS Appl Bio Mater
January 2025
Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad 502285, India.
Triple-negative breast cancer (TNBC) is known for its aggressive nature, typically presenting as high-grade tumors that grow and spread quickly in all breast cancer types. Several studies have reported a strong correlation between cancer and microbial infections due to a compromised immune system. The most frequent infection associated with surface malignancies, including breast cancer, is Candidiasis, which is majorly caused by .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!