The application of polymers as the drug delivery systems for treating oral infections is a relatively new area of research. The present study was to test the release of the antibacterial drug chlorhexidine diacetate (CHDA), the antifungal drug Nystatin (NYS) and the antiviral drug acyclovir (ACY) from polymer blends of poly(ethyl methacrylate) and poly(n-hexyl methacrylate) of different compositions. The effects of polymer blend composition, drug loading and solubilizing surfactants on the release of the drugs have been studied. Measurements of the in vitro rate of drug release showed a sustained release of drug over extended periods of time. Drug release rates decreased with increasing PEMA content in polymer blends. CHDA release rates increased steadily with increasing drug load. The drug release rates increased with the addition of surfactants. This study demonstrates that the three therapeutic agents show a sustained rate of drug release from polymer blends of PEMA and PHMA over extended periods of time. By varying polymer blend compositions as well as the drug concentration (loading), it is possible to control the drug release rates to a desired value. The drug release rate is enhanced by addition of surfactants that solubilize drugs in the polymer blends.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-009-3899-6 | DOI Listing |
Cardiol Rev
October 2024
From the Department of Medicine, New York Medical College, Valhalla, NY.
Resistant hypertension is defined as office blood pressure >140/90 mm Hg with a mean 24-hour ambulatory blood pressure of >130/80 mm Hg in patients who are compliant with 3 or more antihypertensive medications. Those who persistently fail pharmaceutical therapy may benefit from interventional treatment, such as renal denervation. Sympathetic nervous activity in the kidney is a known contributor to increased blood pressure because it results in efferent and afferent arteriole vasoconstriction, reduced renal blood flow, increased sodium and water reabsorption, and the release of renin.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Pharmacy, Sardar Bahadur Khan Women University Quetta, Quetta, Pakistan.
Controlled-release microparticles offer a promising avenue for enhancing patient compliance and minimizing dosage frequency. In this study, we aimed to design controlled-release microparticles of Glipizide utilizing Eudragit S100 and Methocel K 100 M polymers as controlling agents. The microparticles were fabricated through a simple solvent evaporation method, employing various drug-to-polymer ratios to formulate different controlled-release batches labeled as F1 to F5.
View Article and Find Full Text PDFCurr Opin Ophthalmol
January 2025
New York Eye Surgery Center, New York City, New York, USA.
Purpose Of Review: This review highlights new Federal Drug Administration (FDA) approved glaucoma treatments to familiarize providers with immediately available options.
Recent Findings: New FDA-approved treatments include the bimatoprost implant, travoprost implant, direct selective laser trabeculoplasty (DSLT), and ocular pressure adjusting pump. The bimatoprost implant is approved for a single administration with effects lasting for about 1 year, as opposed to the nearly 3-year effect for the travoprost implant.
J Med Chem
January 2025
Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China.
With the dilemma of limited efficacy of individual therapies, it is crucial to develop innovative combination therapy systems to target the complex pathogenesis of cancer. In this study, we designed a nanoprodrug ISL@MIL-101-ADT to facilitate synergistic delivery of hydrogen sulfide (HS) and prodrug ISL for specific eradication of tumor cells with minimal toxicity and maximal efficacy. The nanoprodrug passively targeted tumors through enhanced permeation and retention effects, followed by disintegration and release of IR780, lonidamine (LND), and HS.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK.
Glaucoma is an optic neuropathy in which progressive degeneration of retinal ganglion cells and the optic nerve leads to irreversible visual loss. Glaucoma is one of the leading causes of blindness. The pathogenesis of glaucoma is determined by different pathogenetic mechanisms, including increased intraocular pressure, mechanical stress, excitotoxicity, resistance to aqueous drainage and oxidative stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!