We aim to create an Aspergillus oryzae mutant with a highly reduced chromosome, but better growth, by eliminating the nonessential regions coding various dispensable functions for its better industrial use. In our previous study, we successfully determined the outline of essential and nonessential regions by constructing a series of large chromosomal deletions in A. oryzae chromosome 7. Based on these results, we here constructed two mutants, designated RkuAF7A and RkuAF7B, lacking 24.7 and 24% (725 and 705 kb) of wild type chromosome 7, respectively, using multiple large-scale chromosomal deletions in a recursive pyrG-mediated transformation system. Both showed higher amylase activity in DPY liquid medium and faster growth rate on malt agar medium relative to the parent strain. The two mutants also displayed soft fluffy hyphal morphology when grown in DPY liquid media. In addition, the gene expression profile obtained by DNA microarray indicated that although the deletion regions were fewer than 2% of the whole genome, the effect on whole gene expression exceeded 20%. Among these, the genes involved in secondary metabolism showed a relatively large change in their gene expression levels. Together, the constructed mutants showing better growth and potential usefulness is possibly suitable for further industrial use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00438-009-0494-y | DOI Listing |
Genes Dev
January 2025
Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands;
Enhancers are tissue-specific regulatory DNA elements that can activate transcription of genes over distance. Their target genes most often are located in the same contact domain-chromosomal entities formed by cohesin DNA loop extrusion and typically flanked by CTCF-bound boundaries. Enhancers shared by multiple unrelated genes are underexplored but may be more common than anticipated.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea.
Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.
View Article and Find Full Text PDFJ Hematop
January 2025
Mayo Clinic, Rochester, MN, USA.
Testicular follicular lymphoma (TFL) is an exceedingly rare lymphoma that typically occurs in young male patients and is now recognized as a distinct diagnostic entity in the International Consensus Classification. TFL shows some clinicopathologic and genetic overlap with pediatric-type follicular lymphoma (PTFL). We report a case of TFL occurring in an otherwise healthy 4-year-old boy who presented with painless scrotal swelling.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
Deletion and duplication in the human 16p11.2 chromosomal region are closely linked to neurodevelopmental disorders, specifically autism spectrum disorder. Data from neuroimaging studies suggest white matter microstructure aberrations across these conditions.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA.
Background/objectives: Strabismus is the most common ocular disorder of childhood. Three rare, recurrent genetic duplications have been associated with both esotropia and exotropia, but the mechanisms by which they contribute to strabismus are unknown. This work aims to investigate the mechanisms of the smallest of the three, a 23 kb duplication on chromosome 4 (hg38|4:25,554,985-25,578,843).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!