The goal of this study was to investigate the effect of epicatechin gallate (ECG), a component of green tea polyphenols, on the signal pathway for oxidative stress-induced intracellular reactive oxygen species (ROS) generation and MUC5AC overexpression in normal human nasal epithelial (NHNE) cells. Passage-2 NHNE cells were used, and ECG was administered before stimulation with exogenous hydrogen peroxide (H(2)O(2)). MUC5AC gene and protein levels were measured by real-time PCR and dot blot analysis. Western blot analysis and immunocytofluorescence study were performed for detecting the activity of epidermal growth factor receptor (EGFR). Exogenous H(2)O(2) increases intracellular ROS generation, leading to the overexpression of MUC5AC. The phosphorylation and internalization of EGFR were associated with this ROS generation. ECG decreased the phosphorylation and internalization of EGFR at the cell surface of NHNE cells, resulting in the attenuation of exogenous H(2)O(2)-induced intracellular ROS generation and MUC5AC overexpression. ECG may be a therapeutic material against oxidative stress-induced ROS generation and mucus hypersecretion in airways.

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2009-0205OCDOI Listing

Publication Analysis

Top Keywords

ros generation
20
oxidative stress-induced
12
muc5ac overexpression
12
nhne cells
12
epicatechin gallate
8
epidermal growth
8
growth factor
8
factor receptor
8
generation muc5ac
8
blot analysis
8

Similar Publications

Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising treatment options, showcasing immense potential in addressing both oncologic and nononcologic diseases. Single-component organic phototherapeutic agents (SCOPAs) offer advantages compared to inorganic or multicomponent nanomedicine, including better biosafety, lower toxicity, simpler synthesis, and enhanced reproducibility. Nonetheless, how to further improve the therapeutic effectiveness of SCOPAs remains a challenging research area.

View Article and Find Full Text PDF

Skin-Integrated Electrogenetic Regulation of Vasculature for Accelerated Wound Healing.

Adv Sci (Weinh)

January 2025

ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.

Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA).

View Article and Find Full Text PDF

Convertible Hydrogel Injection Sequentially Regulates Diabetic Periodontitis.

ACS Biomater Sci Eng

January 2025

Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China.

Diabetes exacerbates periodontitis by overexpressing reactive oxygen species (ROS), which leads to periodontal bone resorption. Consequently, it is imperative to relieve inflammation and promote alveolar bone regeneration comprehensively for the development of diabetic periodontal treatment strategies. Furthermore, an orderly treatment to avoid interference between these two processes can achieve the optimal therapeutic effect.

View Article and Find Full Text PDF

Multifunctional CuBiS-BP@PEI Radiosensitizer with Enhanced Reactive Oxygen Species Activity for Multimodal Synergistic Therapy.

ACS Biomater Sci Eng

January 2025

Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.

Development of radiosensitizers with high-energy deposition efficiency, electron transfer, and oxidative stress amplification will help to improve the efficiency of radiotherapy. To overcome the drawbacks of radiotherapy alone, it is also crucial to design a multifunctional radiosensitizer that simultaneously realizes multimodal treatment and tumor microenvironment modulation. Herein, a multifunctional radiosensitizer based on the CuBiS-BP@PEI nanoheterostructure (NHS) for multimodal cancer treatment is designed.

View Article and Find Full Text PDF

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) protein is located in the mitochondria and can regulate cell proliferation. Some studies have shown that the high NDUFA4L2 expression is linked with poor prognosis and cancer progression in various patients with cancers. However, the correlation between NDUFA4L2 and pan-cancer is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!