The characterisation of interspecies differences in gene regulation is crucial to understanding the molecular basis of phenotypic diversity and evolution. The atonal homologue Atoh7 participates in the ontogenesis of the vertebrate retina. Our study reveals how evolutionarily conserved, non-coding DNA sequences mediate both the conserved and the species-specific transcriptional features of the Atoh7 gene. In the mouse and chick retina, species-related variations in the chromatin-binding profiles of bHLH transcription factors correlate with distinct features of the Atoh7 promoters and underlie variations in the transcriptional rates of the Atoh7 genes. The different expression kinetics of the Atoh7 genes generate differences in the expression patterns of a set of genes that are regulated by Atoh7 in a dose-dependent manner, including those involved in neurite outgrowth and growth cone migration. In summary, we show how highly conserved regulatory elements are put to use in mediating non-conserved functions and creating interspecies neuronal diversity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.033449 | DOI Listing |
Curr Pain Headache Rep
January 2025
Department of Pain Medicine, Division of Anesthesiology, Critical Care & Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
Purpose Of Review: Quickly referenceable, streamlined, algorithmic approaches for advanced pain management are lacking for patients, trainees, non-pain specialists, and interventional specialists. This manuscript aims to address this gap by proposing a comprehensive, evidence-based algorithm for managing neuropathic, nociceptive, and cancer-associated pain. Such an algorithm is crucial for pain medicine education, offering a structured approach for patient care refractory to conservative management.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris), 4 place Jussieu, F-75005 Paris, France.
In the animal kingdom, metamorphosis is a well-known developmental transition within various taxa (Cnidarians, Echinoderms, Molluscs, Arthropods, Vertebrates, etc.), which is characterized by the switching from a larval stage to an adult form through the induction of morpho-anatomical, physiological, behavioral, and/or ecological changes. Over the last decades, numerous studies have focused on the hormonal control of cellular processes underlying metamorphosis.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Centre for Bacterial Resistance Biology, Imperial College London, LondonSW7 2AZ, United Kingdom.
The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy.
NOC1, NOC2, and NOC3 are conserved nucleolar proteins essential for regulating ribosomal RNA (rRNA) maturation, a process critical for cellular homeostasis. NOC1, in and yeast, enhances nucleolar activity to sustain rRNA processing, whereas its depletion leads to impaired polysome formation, reduced protein synthesis, and apoptosis. These genes have vertebrate homologs called CEBPZ, NOC2L, and NOC3l.
View Article and Find Full Text PDFBacterial serine-threonine protein kinases (STKs) regulate diverse cellular processes associated with cell growth, virulence, and pathogenicity. They are evolutionarily related to the druggable eukaryotic STKs. However, an incomplete knowledge of how bacterial STKs differ from their eukaryotic counterparts and how they have diverged to regulate diverse bacterial signaling functions presents a bottleneck in targeting them for drug discovery efforts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!