In the developing CNS, Notch1 and its ligand, Jagged1, regulate oligodendrocyte differentiation and myelin formation, but their role in repair of demyelinating lesions in diseases such as multiple sclerosis remains unresolved. To address this question, we generated a mouse model in which we targeted Notch1 inactivation to oligodendrocyte progenitor cells (OPCs) using Olig1Cre and a floxed Notch1 allele, Notch1(12f). During CNS development, OPC differentiation was potentiated in Olig1Cre:Notch1(12f/12f) mice. Importantly, in adults, remyelination of demyelinating lesions was also accelerated, at the expense of proliferation within the progenitor population. Experiments in vitro confirmed that Notch1 signaling was permissive for OPC expansion but inhibited differentiation and myelin formation. These studies also revealed that astrocytes exposed to TGF-beta1 restricted OPC maturation via Jagged1-Notch1 signaling. These data suggest that Notch1 signaling is one of the mechanisms regulating OPC differentiation during CNS remyelination. Thus, Notch1 may represent a potential therapeutical avenue for lesion repair in demyelinating disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776461 | PMC |
http://dx.doi.org/10.1073/pnas.0902834106 | DOI Listing |
Zhongguo Zhong Yao Za Zhi
December 2024
School of Traditional Chinese Medicine, Binzhou Medical College Yantai 264003, China Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.
This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Department of Hematology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences Taiyuan 030013, Shanxi, China.
Objective: To analyze the clinical characteristics and molecular biomarkers of adult T-cell lymphoblastic lymphoma (T-LBL) to identify prognostic factors, and to evaluate the efficacy of different chemotherapy regimens, providing a basis for optimizing treatment strategies for T-LBL.
Methods: A total of 89 Patients aged 18-72 years with T-LBL, confirmed via histopathological examination of lymph nodes, extranodal tissues, or bone marrow, were retrospectively included. Clinical data, treatment details, and mutational profiles were collected.
Sci Bull (Beijing)
December 2024
Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Department of Oncology; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China; Jinfeng Laboratory, Chongqing 401329, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China. Electronic address:
Neurotransmitters are increasingly recognized to play important roles in limiting anti-tumor immunity. N-acetyl-aspartyl-glutamate (NAAG) has been extensively studied in neurological disorders; however, its potential role in restricting anti-tumor immunity has not been investigated. Here, we demonstrated that NAAG or its synthetase RimK-like family member B (RIMKLB) significantly disrupted anti-tumor immunity by rewiring the myeloid progenitor differentiation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), which in turn promoted breast cancer growth and metastasis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
Cataracts remain the leading cause of visual impairment worldwide, yet the underlying molecular mechanisms, particularly in age-related cataracts (ARCs), are not fully understood. The Notch signaling pathway, known for its critical role in various degenerative diseases, may also contribute to ARC pathogenesis, although its specific involvement is unclear. This study investigates the role of Notch signaling in regulating ferroptosis in lens epithelial cells (LECs) and its impact on ARC progression.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea.
Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!