To investigate the role of iron uptake mediated by the siderophore pyoverdine in the virulence of the plant pathogen Pseudomonas syringae pv. tabaci 6605, three predicted pyoverdine synthesis-related genes, pvdJ, pvdL, and fpvA, were mutated. The pvdJ, pvdL, and fpvA genes encode the pyoverdine side chain peptide synthetase III L-Thr-L-Ser component, the pyoverdine chromophore synthetase, and the TonB-dependent ferripyoverdine receptor, respectively. The Delta pvdJ and Delta pvdL mutants were unable to produce pyoverdine in mineral salts-glucose medium, which was used for the iron-depleted condition. Furthermore, the Delta pvdJ and Delta pvdL mutants showed lower abilities to produce tabtoxin, extracellular polysaccharide, and acyl homoserine lactones (AHLs), which are quorum-sensing molecules, and consequently had reduced virulence on host tobacco plants. In contrast, all of the mutants had accelerated swarming ability and increased biosurfactant production, suggesting that swarming motility and biosurfactant production might be negatively controlled by pyoverdine. Scanning electron micrographs of the surfaces of tobacco leaves inoculated with the mutant strains revealed only small amounts of extracellular polymeric matrix around these mutants, indicating disruption of the mature biofilm. Tolerance to antibiotics was drastically increased for the Delta pvdL mutant, as for the Delta psyI mutant, which is defective in AHL production. These results demonstrated that pyoverdine synthesis and the quorum-sensing system of Pseudomonas syringae pv. tabaci 6605 are indispensable for virulence in host tobacco infection and that AHL may negatively regulate tolerance to antibiotics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798240PMC
http://dx.doi.org/10.1128/JB.00689-09DOI Listing

Publication Analysis

Top Keywords

pseudomonas syringae
12
syringae tabaci
12
tabaci 6605
12
host tobacco
12
delta pvdl
12
siderophore pyoverdine
8
tobacco infection
8
pvdj pvdl
8
pvdl fpva
8
delta pvdj
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!