Apart from controlling energy balance, leptin, secreted by adipose tissue, is also involved in the regulation of cardiovascular function. Previous studies have demonstrated that acutely administered leptin stimulates natriuresis and vascular nitric oxide (NO) production and that these effects are impaired in obese animals. However, the mechanism of resistance to leptin is not clear. Because obesity is associated with chronically elevated leptin, we examined if long-term hyperleptinemia impairs acute effects of leptin on sodium excretion and NO production in the absence of obesity. Hyperleptinemia was induced in lean rats by administration of exogenous leptin at a dose of 0.5mg/kg/day for 7 days, and then acute effect of leptin (1mg/kg i.v.) was studied under general anesthesia. Leptin increased fractional sodium excretion and decreased Na(+),K(+)-ATPase activity in the renal medulla. In addition, leptin increased the level of NO metabolites and cyclic GMP in plasma and aortic wall. These acute effects of leptin were impaired in hyperleptinemic animals. In both control and hyperleptinemic groups the effect of leptin on Na(+) excretion and renal Na(+),K(+)-ATPase was abolished by phosphoinositide 3-kinase (PI3K) inhibitor, wortmannin, but not by protein kinase B/Akt inhibitor, triciribine,. In contrast, acute effect of leptin on NO metabolites and cGMP was abolished by triciribine but not by wortmannin. Leptin stimulated Akt phosphorylation at Ser(473) in aortic tissue but not in the kidney, and this effect was comparable in control and hyperleptinemic groups. These results suggest that hyperleptinemia may mediate "renal" and "vascular" leptin resistance observed in obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2009.10.012DOI Listing

Publication Analysis

Top Keywords

leptin
15
effects leptin
12
acute effects
8
sodium excretion
8
acute leptin
8
leptin increased
8
control hyperleptinemic
8
hyperleptinemic groups
8
acute
5
chronic hyperleptinemia
4

Similar Publications

Rapid weight gain in infancy is associated with an increased risk of later adiposity. Very rarely, however, exclusively breastfed infants experience excessive weight gain (EWG) during the period of exclusive breastfeeding (EBF) when breast milk is the only source of nutrition. We investigated growth and body composition at 36 months in children experiencing EWG during EBF.

View Article and Find Full Text PDF

Exercised gut microbiota improves vascular and metabolic abnormalities in sedentary diabetic mice through gut‒vascular connection.

J Sport Health Sci

January 2025

Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR 999077, China. Electronic address:

Background: Exercise elicits cardiometabolic benefits, reducing the risks of cardiovascular diseases and type 2 diabetes. This study aimed to investigate the vascular and metabolic effects of gut microbiota from exercise-trained donors on sedentary mice with type 2 diabetes and the potential mechanism.

Methods: Leptin receptor-deficient diabetic (db/db) and nondiabetic (db/m) mice underwent running treadmill exercise for 8 weeks, during which fecal microbiota transplantation (FMT) was parallelly performed from exercise-trained to sedentary diabetic (db/db) mice.

View Article and Find Full Text PDF

The (dys)regulation of energy storage in obesity.

Physiol Rev

January 2025

University of Zurich, Vetsuise Faculty, Institute of Veterinary Physiology, Zurich, Switzerland.

Metabolic energy stored mainly as adipose tissue is homeostatically regulated. There is strong evidence that human body weight () is physiologically regulated, i.e.

View Article and Find Full Text PDF

Preclinical development of a standardized extract of Ilex paraguariensis A.St.-Hil for the treatment of obesity and metabolic syndrome.

Pharmacol Res

January 2025

Centro de Inovação e Ensaios Pré-Clínicos. Avenida Luiz Boiteux Piazza, 1302 Cachoeira do Bom Jesus, 88056-000 Florianópolis, Santa Catarina, Brazil. Electronic address:

Obesity is a global epidemic often associated with serious medical complications such as diabetes, hypertension and metabolic dysfunction-associated steatohepatitis. Considering the multifactorial nature of these diseases, medicinal plants could be a valuable therapeutic strategy as their phytoconstituents interact with multiple and relevant biological targets. In this context, Ilex paraguariensis emerges as a potential alternative to treat obesity and associated metabolic diseases since several studies have demonstrated its anti-inflammatory, anti-obesity and anti-diabetic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!