That changes in membrane lipid composition alter the barrier function of tight junctions illustrates the importance of the interactions between tetraspan integral tight junction proteins and lipids of the plasma membrane. Application of methyl-beta-cyclodextrin to both apical and basolateral surfaces of MDCK cell monolayers for 2 h, results in an approximately 80% decrease in cell cholesterol, a fall in transepithelial electrical resistance, and a 30% reduction in cell content of occludin, with a smaller reduction in levels of claudins-2, -3, and -7. There were negligible changes in levels of actin and the two non-tight junction membrane proteins GP-135 and caveolin-1. While in untreated control cells breakdown of occludin, and probably other tight junction proteins, is mediated by intracellular proteolysis, our current data suggest an alternative pathway whereby in a cholesterol-depleted membrane, levels of tight junction proteins are decreased via direct release into the intercellular space as components of membrane-bound particles. Occludin, along with two of its degradation products and several claudins, increases in the basolateral medium after incubation with methyl-beta-cyclodextrin for 30 min. In contrast caveolin-1 is detected only in the apical medium after adding methyl-beta-cyclodextrin. Release of occludin and its proteolytic fragments continues even after removal of methyl-beta-cyclodextrin. Sedimentation and ultrastructural studies indicate that the extracellular tight junction proteins are associated with the membrane-bound particles that accumulate between adjacent cells. Disruption of the actin filament network by cytochalasin D did not diminish methyl-beta-cyclodextrin-induced release of tight junction proteins into the medium, suggesting that the mechanism underlying their formation is not actin-dependent. The 41- and 48-kDa C-terminal occludin fragments formed during cholesterol depletion result from the action of a GM6001-sensitive metalloproteinase(s) at some point in the path leading to release of the membrane particles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2812682PMC
http://dx.doi.org/10.1016/j.yexcr.2009.10.020DOI Listing

Publication Analysis

Top Keywords

tight junction
20
junction proteins
20
membrane particles
8
membrane-bound particles
8
occludin
6
membrane
6
tight
6
junction
6
proteins
6
release
5

Similar Publications

L-Carnitine is widely recognized for its involvement in lipid metabolism, but its effects on muscle quality and gut health in carp have not been well studied. The research aimed to investigate how L-carnitine influences muscle quality and intestinal health in high-fat-fed carp. The study was separated into four groups that received either the standard diet, a high-fat diet (HFD), or a HFD supplemented with 500 mg/kg L-carnitine (LLC), or a HFD supplemented with 1000 mg/kg L-carnitine (HLC) for 56 days.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.

View Article and Find Full Text PDF

Ion permeability profiles of renal paracellular channel-forming claudins.

Acta Physiol (Oxf)

February 2025

Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Aim: Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins.

View Article and Find Full Text PDF

Aims: The purpose of this study was to investigate the effects of Bacillus subtilis supplementation on the health of weaned piglets and whether Bacillus subtilis supplementation can reduce the damage of piglets induced by ETEC K88.

Methods And Results: The experiment was designed with a 2 × 2 factorial arrangement, comprising the control (CON) group, Bacillus subtilis (PRO) group, Escherichia coli K88 (ETEC) group, and Bacillus subtilis + ETEC (PRO + ETEC) group. Regardless of the presence of ETEC, the addition of PRO increased the piglets' final body weight (FW), average daily gain (ADG), and daily feed intake (ADFI).

View Article and Find Full Text PDF

Background: The main challenge in new drug development is accurately predicting the human response in preclinical models.

Methods: In this study, we developed three different intestinal barrier models using advanced biofabrication techniques: (i) a manual model containing Caco-2 and HT-29 cells on a collagen bed, (ii) a manual model with a Caco-2/HT-29 layer on a HDFn-laden collagen layer, and (iii) a 3D bioprinted model incorporating both cellular layers. Each model was rigorously tested for its ability to simulate a functional intestinal membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!