The CACNA1A gene encodes the poreforming, voltage-sensitive subunit of the voltage-dependent Ca(v)2.1 calcium channel. Mutations in this gene have been linked to several human disorders, including familial hemiplegic migraine type 1, episodic ataxia type 2, and spinocerebellar ataxia type 6. In mice, mutations of the homolog Cacna1a cause recessively inherited phenotypes in tottering, rolling Nagoya, rocker, and leaner mice. Here we describe two knockdown mice with 28.4+/-3.4% and 13.8+/-3.3% of the wild-type Ca(v)2.1 quantity. 28.4+/-3.4% level mutants displayed ataxia, absence-like seizures and progressive cerebellar atrophy, although they had a normal life span. Mutants with 13.8+/-3.3% level exhibited ataxia severer than the 28.4+/-3.4% level mutants, absence-like seizures and additionally paroxysmal dyskinesia, and died premature around 3 weeks of age. These results indicate that knock down of Ca(v)2.1 quantity to 13.8+/-3.3% of the wild-type level are sufficient to induce the all neurological disorders observed in natural occurring Cacna1a mutants. These knockdown animals with Ca(v)2.1 calcium channels intact can contribute to functional studies of the molecule in the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2009.10.102DOI Listing

Publication Analysis

Top Keywords

cav21 calcium
12
calcium channels
8
sufficient induce
8
induce neurological
8
neurological disorders
8
disorders observed
8
observed natural
8
natural occurring
8
occurring cacna1a
8
cacna1a mutants
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!