The Leishmania strains belonging to cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL) have been reported to possess close homology in genome profiles. To confirm this on genetic basis an attempt was made to differentiate Leishmania major; Leishmania tropica and Leishmania donovani genetically for the first time using amplified fragment length polymorphism (AFLP)--a high throughput DNA fingerprinting technique. The objective of this research work was to identify DNA markers of CL and VL. Ten combinations of selective primers detect a total of 1487 informative AFLP marker. Percentage of polymorphism was 45.12%. Three hundred and thirty-seven unique AFLP markers were also identified in three species of Leishmania. A clear distinction was revealed between L. major and L. donovani. It was inferred by AFLP analysis that a higher rate of polymorphisms occurred among Leishmania species which indicate the distinguished pattern of the disease cause by Leishmania, i.e. VL and CL. Analysis based on polymorphic AFLP markers revealed considerably high genetic variation among the genome of these species which was sufficient to distinguish between CL and VL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actatropica.2009.10.006DOI Listing

Publication Analysis

Top Keywords

amplified fragment
8
fragment length
8
length polymorphism
8
aflp analysis
8
leishmania
8
leishmania species
8
aflp markers
8
aflp
5
polymorphism aflp
4
analysis distinguishing
4

Similar Publications

Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect.

View Article and Find Full Text PDF

Light chain Split Luciferase assay implicates pathological NOTCH3 thiol reactivity in inherited cerebral small vessel disease.

J Biol Chem

January 2025

Departments of Neurology, University of Michigan, Ann Arbor, MI 48109; Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109; Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI 48105. Electronic address:

Stereotyped mutations in NOTCH3 drive CADASIL, the leading inherited cause of stroke and vascular dementia. The vast majority of these mutations result in alterations in the number of cysteines in the gene product. However, non-cysteine altering pathogenic mutations have also been identified, making it challenging to discriminate pathogenic from benign NOTCH3 sequence variants.

View Article and Find Full Text PDF

Polyploidy is a powerful mechanism driving genetic, physiological, and phenotypic changes among cytotypes of the same species across both large and small geographic scales. These changes can significantly shape population structure and increase the evolutionary and adaptation potential of cytotypes. , an edaphic steno-endemic species with a narrow distribution in the Balkan Peninsula, serves as an intriguing case study.

View Article and Find Full Text PDF

Background: The patterns of inbreeding coefficients () and fine spatial genetic structure (FSGS) were evaluated regarding the mating system and inbreeding depression of food-deceptive orchids, , var. , and , from NE Poland.

Methods: We used 455 individuals, representing nine populations of three taxa and AFLPs, to estimate percent polymorphic loci and Nei's gene diversity, which are calculated using the Bayesian method; ; ; FSGS with the pairwise kinship coefficient (); and AMOVA in populations.

View Article and Find Full Text PDF

Exploring the Potential of Genome-Wide Hybridization Capture Enrichment for Forensic DNA Profiling of Degraded Bones.

Genes (Basel)

December 2024

Australian Centre for Ancient DNA, The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.

Unlabelled: In many human rights and criminal contexts, skeletal remains are often the only available samples, and they present a significant challenge for forensic DNA profiling due to DNA degradation. Ancient DNA methods, particularly capture hybridization enrichment, have been proposed for dealing with severely degraded bones, given their capacity to yield results in ancient remains.

Background/objectives: This paper aims to test the efficacy of genome-wide capture enrichment on degraded forensic human remains compared to autosomal STRs analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!