3' end processing of histone pre-mRNA requires U7 snRNP, which binds downstream of the cleavage site and recruits the endonuclease CPSF-73. U7 snRNP contains a unique Sm ring in which the canonical SmD2 protein is replaced by Lsm11. We used the yeast two-hybrid system to identify binding partners of Lsm11 and selected the proapoptotic protein FLASH. Human FLASH interacts with Lsm11 in vitro and stimulates 3' end processing of histone pre-mRNA in mammalian nuclear extracts. We also identified the FLASH ortholog in Drosophila and demonstrate that it interacts with Lsm11 in vitro and in vivo. Drosophila FLASH localizes to histone locus bodies, and its depletion from fly cells inhibits U7-dependent processing, resulting in polyadenylation of histone mRNAs. These results demonstrate that FLASH is an essential factor required for 3' end maturation of histone mRNAs in both vertebrates and invertebrates and suggest a potential link between this process and apoptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819824 | PMC |
http://dx.doi.org/10.1016/j.molcel.2009.08.016 | DOI Listing |
Viruses
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
HDAC6 modulates viral infection through diverse mechanisms. Here, we investigated the role of HDAC6 in influencing viral infection in pig cells with the aim of exploiting the potential antiviral gene targets in pigs. Using gene knockout and overexpression strategies, we found that HDAC6 knockout greatly reduced PRV and VSV infectivity, whereas HDAC6 overexpression increased their infectivity in PK15 cells.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece.
Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
Background/objectives: Cold stress poses a significant threat to Asian rice cultivation, disrupting important physiological processes crucial for seedling establishment and overall plant growth. It is, thus, crucial to elucidate genetic pathways involved in cold stress tolerance response mechanisms.
Methods: We mapped , a ()-type homolog of rice, to a low-temperature seedling survivability (LTSS) QTL and used genomics, molecular genetics, and physiological assays to assess its role in plant resilience against low-temperature stress.
Biomolecules
December 2024
Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania.
The biological process of aging is influenced by a complex interplay of genetic, environmental, and epigenetic factors. Recent advancements in the fields of epigenetics and senolytics offer promising avenues for understanding and addressing age-related diseases. Epigenetics refers to heritable changes in gene expression without altering the DNA sequence, with mechanisms like DNA methylation, histone modification, and non-coding RNA regulation playing critical roles in aging.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
Neurodegenerative diseases are characterized by profound differences between females and males in terms of incidence, clinical presentation, and disease progression. Furthermore, there is evidence suggesting that differences in sensitivity to medical treatments may exist between the two sexes. Although the role of sex hormones and sex chromosomes in driving differential susceptibility to these diseases is well-established, the molecular alterations underlying these differences remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!