Introduction: VWF circulates in plasma as a series of heterogeneous multimers, mediating platelet tethering, translocation and finally adhesion to areas of injured endothelium under physiological high arterial blood flow. VWF-platelet binding requires conformational changes in VWF, which are induced by immobilization and shear. Because of unavailability of a simple flow-based measurement system, VWF activity assays are generally performed under static conditions. We describe an easily reproducible in vitro flow-chamber model using commercially available flow devices to examine VWF-collagen binding and VWF-mediated platelet adhesion under physiological flow conditions.
Methods: The collagen surface of the flow-chamber was analyzed by atomic force microscopy. Collagen-bound VWF was characterized by multimer analysis and multi labelling immunofluorescence detection of exposed GPIb binding domains. Platelet adhesion was captured by time-lapse microscopy.
Results: The described flow-chamber system facilitates multimer analysis of collagen-bound VWF, whereas all VWF multimers bound to collagen under physiological low to high shear rates. Multi labelling immunofluorescence detection exhibited exposed GPIb binding domains co-localized with VWF molecules. VWF-dependent platelet adhesion using time-lapse microscopy showed values comparable to experiments done with whole blood, and platelet adhesion was dependent on the VWF concentration.
Conclusions: The established flow-chamber model represents an easy-to-set-up and customized tool for the characterization of VWF-binding to collagen as well as the determination of VWF-dependent platelet adhesion under defined flow conditions in real-time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.thromres.2009.08.020 | DOI Listing |
J Thromb Haemost
January 2025
Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
Background: Blood clot formation, triggered by vascular injury, is crucial for haemostasis and thrombosis. Blood clots are composed mainly of fibrin fibres, platelets and red blood cells (RBCs). Recent studies show that clot surface also develops a fibrin film, which provides protection against wound infection and retains components such as RBCs within the clot.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China. Electronic address:
Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method.
View Article and Find Full Text PDFBiomater Sci
January 2025
Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China.
Nature-inspired superhydrophobic materials have attracted considerable interest in blood-contacting biomedical applications due to their remarkable water-repellent and self-cleaning properties. However, the interaction mechanism between blood components and superhydrophobic surfaces remains unclear. To explore the effect of trapped air on platelet adhesion, we designed four distinct hydrophobic titanium dioxide (TiO) nanostructures with different fractions of trapped air.
View Article and Find Full Text PDFLangmuir
January 2025
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
Steric stabilization and lubrication give loop polymer brushes enhanced antifouling properties. In the study, linear zwitterionic poly(NMASMCMS) brushes were first constructed on a poly(ethylene terephthalate) (PET) surface through surface-initiated reversible addition-fragmentation chain-transfer (SI-RAFT) polymerization. The tethered linear brushes on sheets were then thiolated with ethanolamine, followed by oxidation to form loop brushes.
View Article and Find Full Text PDFNat Immunol
January 2025
Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA.
We performed a systems vaccinology analysis to investigate immune responses in humans to an H5N1 influenza vaccine, with and without the AS03 adjuvant, to identify factors influencing antibody response magnitude and durability. Our findings revealed a platelet and adhesion-related blood transcriptional signature on day 7 that predicted the longevity of the antibody response, suggesting a potential role for platelets in modulating antibody response durability. As platelets originate from megakaryocytes, we explored the effect of thrombopoietin (TPO)-mediated megakaryocyte activation on antibody response longevity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!