Role of predation by zooplankton in transport and fate of protozoan (oo)cysts in granular activated carbon filtration.

Water Res

NSERC Industrial Chair on Drinking Water, Ecole Polytechnique de Montreal, Department of Civil, Geological, and Mining Engineering, P.O. Box 6079, Downtown Station, Montreal, Quebec H3C 3A7, Canada.

Published: February 2010

AI Article Synopsis

  • Zooplankton are significant in the transport and fate of pathogenic organisms in drinking water, yet their role is not fully understood.
  • The study aimed to evaluate how natural zooplankton predation affects the movement and persistence of protozoan (oo)cysts during the granular activated carbon (GAC) filtration process.
  • Key findings revealed that rotifers, a type of zooplankton, prey on (oo)cysts like Cryptosporidium and Giardia, which suggests zooplankton may contribute to the remobilization of these persistent pathogens in drinking water systems.

Article Abstract

The significance of zooplankton in the transport and fate of pathogenic organisms in drinking water is poorly understood, although many hints of the role of predation in the persistence of microorganisms through water treatment processes can be found in literature. The objective of this study was to assess the impact of predation by natural zooplankton on the transport and fate of protozoan (oo)cysts in granular activated carbon (GAC) filtration process. UV-irradiated unlabelled Cryptosporidium parvum and Giardia lamblia (oo)cysts were seeded into two pilot-scale GAC filtration columns operated under full-scale conditions. In a two-week period after seeding, a reduction of free (oo)cysts retained in the filter bed was observed. Zooplankton was isolated from the filter bed and effluent water on a 30 microm net before and during the two-week period after seeding; it was enumerated and identified. Rotifers, which are potential predators of (oo)cysts, accounted for the major part of the isolated zooplankton. Analytical methods were developed to detect (oo)cysts internalized in natural zooplankton isolated from the filter bed and effluent water. Sample sonication was optimized to disrupt zooplankton organisms and release internalized microorganisms. (Oo)cysts released from zooplankton after sonication were isolated by IMS and stained (EasyStain) for microscopic counting. Both Cryptosporidium and Giardia (oo)cysts were detected in association with zooplankton in the filter bed samples as well as in the effluent of GAC filters. The results of this study suggest that predation by zooplankton can play a role in the remobilization of persistent pathogens such as Cryptosporidium and Giardia (oo)cysts retained in GAC filter beds, and consequently in the transmission of these pathogens in drinking water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2009.09.001DOI Listing

Publication Analysis

Top Keywords

filter bed
16
zooplankton transport
12
transport fate
12
zooplankton
10
oocysts
9
role predation
8
predation zooplankton
8
fate protozoan
8
protozoan oocysts
8
oocysts granular
8

Similar Publications

Objectives: We investigated image quality and standardized uptake values (SUVs) for different lesion sizes using clinical data generated by F-FDG-prone breast silicon photomultiplier (SiPM)-based positron emission tomography/computed tomography (PET/CT).

Methods: We evaluated the effect of point-spread function (PSF) modeling and Gaussian filtering (Gau) and determined the optimal reconstruction conditions. We compared the signal-to-noise ratio (SNR), contrast, %coefficient of variation (%CV), SUV, and Likert scale score between ordered-subset expectation maximization (OSEM) time-of-flight (TOF) and OSEM+TOF+PSF in phantom and clinical studies.

View Article and Find Full Text PDF

Background: This study aimed to develop and validate a multiregional radiomic-based composite model to predict symptomatic radiation pneumonitis (SRP) in non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiation therapy (SBRT).

Materials And Methods: 189 patients from two institutions were allocated into training, internal validation and external testing cohorts. The associations between the SRP and clinic-dosimetric factors were analyzed using univariate and multivariate regression.

View Article and Find Full Text PDF

Deriving Accurate Nocturnal Heart Rate, rMSSD and Frequency HRV from the Oura Ring.

Sensors (Basel)

November 2024

Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117549, Singapore.

Cardiovascular diseases are a major cause of mortality worldwide. Long-term monitoring of nighttime heart rate (HR) and heart rate variability (HRV) may be useful in identifying latent cardiovascular risk. The Oura Ring has shown excellent correlation only with ECG-derived HR, but not HRV.

View Article and Find Full Text PDF

Functional characteristics and mechanisms of microbial community succession and assembly in a long-term moving bed biofilm reactor treating real municipal wastewater.

Environ Res

December 2024

Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai, 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China. Electronic address:

Moving bed biofilm reactor (MBBR) technology with diverse merits is efficient in treating various waste streams whereas their microbial functional properties and ecology still need in-depth investigation, especially in real wastewater treatment systems. Herein, a well-controlled MBBR treating municipal wastewater was established to investigate the long-term system performance and the underlying principles of community succession and assembly. The system successfully achieved ammonium, TN, and chemical oxygen demand (COD) removal of 96.

View Article and Find Full Text PDF

A non-target evaluation of drinking water contaminants in pilot scale activated carbon and anion exchange resin treatments.

Water Res

November 2024

Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen 1871, Denmark.

Article Synopsis
  • This study examines how well different types of Granular Activated Carbon (GAC) and an anion exchange resin can remove PFAS and other contaminants from groundwater used for drinking water production.
  • GAC was effective initially, showing low breakthrough rates for contaminants, but its efficiency decreased over time; however, the resin improved the removal of certain acid compounds but not all.
  • Some contaminants were effectively removed, but the use of resin filters led to the detection of new contaminants in the treated water, raising concerns about drinking water safety.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!