Percutaneous vertebroplasty is a minimally invasive procedure that has shown excellent results in the treatment of back pain due to acute-subacute vertebral fracture. The bone scintigraphy shows the increase of metabolic exchange in the fracture. The new hybrid SPECT-CT equipment combines bone SPECT images with Computed Tomography (CT), making it possible to obtain more combined, functional and anatomical information. We present 5 selected patients studied by bone SPECT-CT in whom fused images made it possible to obtain a more precise localization of the pain origin, and thus assess other possible causes of the vertebral pain or even reassess the vertebroplasty indication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.remn.2009.07.004 | DOI Listing |
Front Oncol
January 2025
Department of Clinical Development, POINT Biopharma, a wholly owned subsidiary of Eli Lilly and Company, Indianapolis, IN, United States.
Introduction: SPLASH (NCT04647526) is a multicenter phase III trial evaluating the efficacy and safety of [Lu]Lu-PNT2002 radioligand therapy in metastatic castration-resistant prostate cancer (mCRPC). This study leveraged a lead-in phase to assess tissue dosimetry and evaluate preliminary safety and efficacy, prior to expansion into a randomized phase. Here we report those results.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
School of Computing, Mathematics and Engineering, Charles Sturt University, Albury, Australia.
Background: The limitation in spatial resolution of bone scintigraphy, combined with the vast variations in size, location, and intensity of bone metastasis (BM) lesions, poses challenges for accurate diagnosis by human experts. Deep learning-based analysis has emerged as a preferred approach for automating the identification and delineation of BM lesions. This study aims to develop a deep learning-based approach to automatically segment bone scintigrams for improving diagnostic accuracy.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Nuclear Medicine and Molecular Imaging, Institut de Cancérologie de Strasbourg Europe (ICANS), University Hospitals of Strasbourg, University of Strasbourg, 67200 Strasbourg, France.
Patients diagnosed with multiple endocrine neoplasia type-1 (MEN1) often initially present with primary hyperparathyroidism (pHPT), and typically undergo surgical intervention. While laboratory tests are fundamental for diagnosis, imaging is crucial for localizing pathological parathyroids to aid in precise surgical planning. In this pictorial review, we will begin by comprehensively examining key imaging techniques and their established protocols, evaluating their effectiveness in detecting abnormal parathyroid glands.
View Article and Find Full Text PDFEJNMMI Res
January 2025
Department of Nuclear Medicine, Cantonal Hospital Baden, Affiliated Hospital for Research and Teaching of the Faculty of Medicine, University of Zurich, Baden, Switzerland.
Data Brief
February 2025
Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo 111421, Paraguay.
This article presents 582 bone scan images from 291 adult patients who attended the Nuclear Medicine Service at the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), Paraguay, between 2020 and 2024. The images were acquired using trimodal SPECT-CT-PET equipment, model AnyScan SCP, and the MEDISO brand. Approximately 20 mCi of technetium-99m methylene diphosphonate (Tc-MDP) was administered to each patient, producing whole-body planar images in anterior and posterior projections of the axial and appendicular skeleton with a resolution of 256 × 1024 pixels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!