Caloric restriction (CR), reduced protein, methionine, or tryptophan diets; and reduced insulin and/or IGFI intracellular signaling can extend mean and/or maximum lifespan and delay deleterious age-related physiological changes in animals. Mice and flies can shift readily between the control and CR physiological states, even at older ages. Many health benefits are induced by even brief periods of CR in flies, rodents, monkeys, and humans. In humans and nonhuman primates, CR produces most of the physiologic, hematologic, hormonal, and biochemical changes it produces in other animals. In primates, CR provides protection from type 2 diabetes, cardiovascular and cerebral vascular diseases, immunological decline, malignancy, hepatotoxicity, liver fibrosis and failure, sarcopenia, inflammation, and DNA damage. It also enhances muscle mitochondrial biogenesis, affords neuroprotection; and extends mean and maximum lifespan. CR rapidly induces antineoplastic effects in mice. Most claims of lifespan extension in rodents by drugs or nutrients are confounded by CR effects. Transcription factors and co-activators involved in the regulation of mitochondrial biogenesis and energy metabolism, including SirT1, PGC-1alpha, AMPK and TOR may be involved in the lifespan effects of CR. Paradoxically, low body weight in middle aged and elderly humans is associated with increased mortality. Thus, enhancement of human longevity may require pharmaceutical interventions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arr.2009.10.003 | DOI Listing |
Nutrients
January 2025
Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy.
Obesity is closely linked to chronic low-grade inflammation and the development of cardio-metabolic comorbidities. Monocyte subsets, which are crucial in immune responses, have been reported to be altered in individuals with obesity, potentially exacerbating inflammation. Although very-low-calorie ketogenic diets (VLCKDs) are recognized for their efficacy in promoting weight loss and improving metabolic health, their impact on circulating monocyte subsets remains poorly understood.
View Article and Find Full Text PDFNutrients
January 2025
Department of Sports Medicine and Sports Nutrition, Ruhr University Bochum, 44801 Bochum, Germany.
Background/objectives: Low energy availability (LEA) can cause impaired reproductive function, bone health issues, and suppressed immune function, and may result in decreased performance and overall health status. The purpose of this study was to investigate adaptions of body composition, blood status, resting metabolic rate, and endurance performance to gain more comprehensive insights into the symptoms of LEA and the adaptive effects in the athlete population (active women (n = 11) and men (n = 11)).
Methods: Three treatments were defined as 45 (EA45, control), 30 (EA30), and 10 (EA10) kcal/kg FFM/day and randomly assigned.
Nutrients
January 2025
Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
Objective: In treating obesity, energy intake control is essential to avoid exceeding energy expenditure. However, excessive restriction of energy intake often leads to resting energy expenditure (REE) reduction, increasing hunger and making weight loss difficult. This study aimed to investigate whether providing nutritional guidance that considers energy expenditure based on the regular evaluation of REE and physical activity could effectively reduce body weight (BW) in patients with obesity.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy.
Cellular senescence is a state of permanent cell cycle arrest accompanied by metabolic activity and characteristic phenotypic changes. This process is crucial for developing age-related diseases, where excessive calorie intake accelerates metabolic dysfunction and aging. Overnutrition disturbs key metabolic pathways, including insulin/insulin-like growth factor signaling (IIS), the mammalian target of rapamycin (mTOR), and AMP-activated protein kinase.
View Article and Find Full Text PDFNat Commun
January 2025
WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore.
Healthy dietary patterns rich in legumes can improve metabolic health, although their additional benefits in conjunction with calorie restriction have not been well-established. We investigated effects of a calorie-restricted, legume-enriched, multicomponent intervention diet compared with a calorie-restricted control diet in 127 Chinese prediabetes participants, living in Singapore. The study was a 16-week, single-blind, parallel-design, randomized controlled trial (n = 63 intervention group (IG), n = 64 control group (CG); mean ± SD age 62.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!