Redox effects on the coordination geometry and heme conformation of bis(N-methylimidazole) complexes of superstructured Fe-porphyrins. A spectroscopic study.

Inorg Chem

Service de Bioénergétique, Biologie Structurale et Mécanismes (SB2SM) et URA CNRS 2096, Institut de Biologie et Technologie de Saclay (iBiTec-S), CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France.

Published: November 2009

Electronic absorption, electron paramagnetic resonance (EPR), and Soret-excited resonance Raman (RR) spectra are reported for bis(N-alkylimidazole) complexes of various iron(III)-"basket-handle" (Fe(III)BHP(+)) and "picket-fence" (Fe(III)PFP(+)) porphyrins in methylene chloride. The Fe(III)BHP(+) derivatives consist of four cross-trans (CT) and two adjacent-cis (AC) -linked in which the composition and the length of the handles are variable (CT Fe(III)[(C(11)Im)(2)(+)], CT and AC Fe(III)[((C(4))(2)phi)(2)](+), CT Fe(III)[((C(3))(2)phi)(C(12))](+), CT and AC Fe(III)[((C(3))(2)phi)(2)](+)). The meso-alphaalpha betabeta and meso-alphabeta alphabeta atropisomers of Fe(III)-tetrakis(o-pivalamidophenyl)-porphyrins represents the Fe(III)PFP(+) derivatives (Fe(III)alphaalpha betabeta-T(piv)PP(+) and Fe(III)alphabeta alphabeta-T(piv)PP(+), respectively). The absorption and RR data obtained for these ferric compounds were compared to those previously published for the homologous ferrous complexes (Picaud, T., Le Moigne, C., Loock, B., Momenteau, M. and Desbois, A. J. Am. Chem. Soc. 2003, 125, 11616 and Le Moigne, C., Picaud, T., Boussac, A., Loock, B., Momenteau, M. and Desbois, A. Inorg. Chem. 2003, 42, 6081). The Soret band position of the eight investigated ferric compounds is observed between 417 and 424 nm, indicating that none of the complexes possesses a planar heme. The EPR spectra show that most of the Fe(III)BHP(+) complexes and all the Fe(III)PFP(+) complexes are rhombic B-type hemichromes (g(max) = 2.86-2.96). Notable exceptions concern the bis(N-methylimidazole) complexes of two CT Fe(III)BHP(+). The Fe(III)BHP(+) with the shortest handles (Fe(III)[((C(3))(2)phi)(2)](+)) exhibits a g value at 2.80. When the handles are lengthened by two methylene units (Fe(III)[((C(3))(2)phi)(2)](+)), the EPR spectrum corresponds to a mixture of two "highly anisotropic low-spin " or "large g(max)" type I EPR signals, a major species at g = 3.17 and a minor species at g = 3.77. All these EPR data were converted in terms of dihedral angle formed by the rings of the axial ligands. The RR spectra of the Fe(III)BHP(+) and Fe(III)PFP(+) complexes exhibited variable frequencies for the structure-sensitive nu(2) and nu(8) lines (1558-1563 cm(-1) and 386-401 cm(-1), respectively). In considering the ability of the different superstructures to stabilize particular out-of-plane distortions, this vibrational information was analyzed in terms of heme structure through changes in core size and Fe-N(pyrrole) bond length, in relation to changes in coordination geometry. The bis(N-methylimidazole) complex of Fe(III)[((C(3))(2)phi)(2)](+) was found to be the most distorted with a strongly ruffled tetrapyrrole. Because of a handle asymmetry, the heme conformation of the bis(N-methylimidazole) complex of Fe(III)[((C(3))(2)phi)(C(12))](+) was deduced to be a composition of ruffled and domed structures. The heme structure of the other complexes is a mixture of ruffled and saddled or ruffled and waved conformations. Taking into account our previous data on the ferrous series, this investigation provides information about the reorganization of the heme structure upon iron oxidation. The general trend is a decrease of either the core-size, or the Fe-N(pyrrole) bond length, or both. However, we demonstrated that the heme superstructures precisely control the nature and the extent of the tetrapyrrole reshaping. These results point out similar possible effect in the heme proteins, considering both an analogy between porphyrin superstructures and amino acids forming the heme sites and the diversity of the heme environments in the proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic9010604DOI Listing

Publication Analysis

Top Keywords

heme structure
12
heme
10
complexes
9
coordination geometry
8
heme conformation
8
conformation bisn-methylimidazole
8
bisn-methylimidazole complexes
8
ferric compounds
8
loock momenteau
8
momenteau desbois
8

Similar Publications

Cyanobacterial cytochrome c6 (Cyt c6) is crucial for electron transfer between the cytochrome b6f complex and photosystem I (PSI), playing a key role in photosynthesis and enhancing adaptation to extreme environments. This study investigates the high-resolution crystal structures of Cyt c6 from PCC 7942 and PCC 6803, focusing on its dimerization mechanisms and functional implications for photosynthesis. Cyt c6 was expressed in using a dual-plasmid co-expression system and characterized in both oxidized and reduced states.

View Article and Find Full Text PDF

Enhancement of Antioxidant Activity, Stability, and Structure of Heme-Peptides by L-Lysine.

Foods

January 2025

Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230601, China.

Porcine blood is rich in protein and has always been the focus of research. Heme-peptides prepared from porcine hemoglobin are susceptible to oxidative degeneration during preparation and storage, thus affecting their function and stability. This study evaluated the enhancement effects of L-lysine (Lys) on recovery rate, antioxidant activity, stability, and structure.

View Article and Find Full Text PDF

Nitrite (NO) interacts with myoglobin (Mb) and hemoglobin (Hb) behaving as a ligand of both the ferrous (i.e., Mb(II) and Hb(II)) and ferric (i.

View Article and Find Full Text PDF

Fatty acid peroxygenases have emerged as promising biocatalysts for hydrocarbon biosynthesis due to their ability to perform C-C scission, producing olefins - key building blocks for sustainable materials and fuels. These enzymes operate through non-canonical and complex mechanisms that yield a bifurcated chemoselectivity between hydroxylation and decarboxylation. In this study, we elucidate structural features in P450 decarboxylases that enable the catalysis of unsaturated substrates, expanding the mechanistic pathways for decarboxylation reaction.

View Article and Find Full Text PDF

The remarkable efficiency with which enzymes catalyze small-molecule reactions has driven their widespread application in organic chemistry. Here, we employ automated fast-flow solid-phase synthesis to access catalytically active full-length enzymes without restrictions on the number and structure of noncanonical amino acids incorporated. We demonstrate the total syntheses of iron-dependent myoglobin (BsMb) and sperm whale myoglobin (SwMb).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!