Transparent metal nanowire thin films prepared in mesostructured templates.

Nano Lett

Beverly and Raymond Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Wolfson Applied Materials Research Center, Tel Aviv 69978, Israel.

Published: December 2009

The preparation of conductive and transparent gold/silver nanowire mesh films is reported. The nanowires formed after the reduction of the metal ions was triggered and a thin growth solution film was spread on a substrate. Metal reduction progressed within a template of a highly concentrated surfactant liquid crystalline mesostructure formed on the substrate during film drying to form ordered bundles of ultrathin nanowires. The films exhibited metallic conductivity over large areas, high transparency, and flexibility.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl902458jDOI Listing

Publication Analysis

Top Keywords

transparent metal
4
metal nanowire
4
nanowire thin
4
thin films
4
films prepared
4
prepared mesostructured
4
mesostructured templates
4
templates preparation
4
preparation conductive
4
conductive transparent
4

Similar Publications

We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.

View Article and Find Full Text PDF

Multicolored Bifacial Perovskite Solar Cells through Top Electrode Engineering.

ACS Appl Mater Interfaces

January 2025

Department of Microelectronic Science and Engineering, Ningbo University, Ningbo 315000, China.

Power generation and architectural beauty are equally important for designing efficient and esthetically appealing bifacial perovskite solar cells (PSCs). In this work, efficient and multicolored p-i-n-structured PSCs are achieved by taking advantage of a dielectric/metal/dielectric (DMD)-type (MoO/Ni/Ag/MoO) transparent counter electrode. The MoO/Ni underlayer effectively promotes the formation of a continuous and conductive ultrathin Ag transparent film, especially the 1 nm Ni seed layer adjusts the interface energy level between perovskite/MoO and Ag, resulting in Ohmic contact of the electrode to promote charge extraction and collection.

View Article and Find Full Text PDF

High-k metal oxides are gradually replacing the traditional SiO dielectric layer in the new generation of electronic devices. In this paper, we report the production of five-element high entropy metal oxides (HEMOs) dielectric films by solution method and analyzed the role of each metal oxide in the system by characterizing the film properties. On this basis, we found optimal combination of (AlGaTiYZr)O with the best dielectric properties, exhibiting a low leakage current of 1.

View Article and Find Full Text PDF
Article Synopsis
  • A novel technique was developed to convert aluminum into transparent aluminum oxide through a small-scale anodization process using droplets.
  • Anodization at 2 V for 10 minutes produced a uniform and transparent oxide layer, with chemical analysis showing the presence of aluminum oxide/hydroxide.
  • The process resulted in a smoother surface and randomly distributed nanopores, indicating potential for broader applications in sustainable electronics and other fields.
View Article and Find Full Text PDF

Emerging 0D Hybrid Metal Halide Luminescent Glasses.

Adv Mater

January 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China.

Article Synopsis
  • 0D hybrid metal halide (HMH) luminescent glasses are gaining popularity due to their unique chemical properties and connection to crystalline forms, but their glass-forming abilities and luminescent characteristics are not fully understood.
  • The review discusses the formation of these glasses through melt-quenching, examines the current compounds that can create stable glassy phases, and explores their structural features, such as transparency and luminescence.
  • Additionally, potential applications in areas like X-ray detection, anti-counterfeiting, and information encryption are highlighted, along with insights into future developments for 0D HMH glasses.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!