Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biomimetic calcium phosphate (Ca-P) coatings improve the osteoconductivity of orthopedic implants and show promise as slow delivery systems for growth factors. This paper compares the structure and composition of biomimetic coatings on flat titanium coupons and on Ti wires/thin pins that are often used as model implants in small animal in vivo models. Ca-P coatings were grown on alkali-treated Ti substrates using a two-step deposition procedure. The coatings on wires consisted of a surface layer of octacalcium phosphate (OCP) and a layer of Ca-deficient hydroxyapatite (CDHA) underneath. The coating thickness and the proportion of CDHA decreased with increasing wire diameter. The coatings on flat coupons were the thinnest, and were comprised almost entirely of OCP. A mechanism of successive formation of the CDHA and OCP phases based on the interplay between nucleation, growth and hydrolysis of OCP crystals as a function of changing local supersaturation is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-009-3906-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!