Nuclear targeting of bacterial proteins is an emerging pathogenic mechanism whereby bacterial proteins can interact with nuclear molecules and alter the physiology of host cells. The fully sequenced bacterial genome can predict proteins that target the nuclei of host cells based on the presence of nuclear localization signal (NLS). In the present study, we predicted bacterial proteins with the NLS sequences from Klebsiella pneumoniae by bioinformatic analysis, and 13 proteins were identified as carrying putative NLS sequences. Among them, HsdM, a subunit of KpnAl that is a type I restriction-modification system found in K. pneumoniae, was selected for the experimental proof of nuclear targeting in host cells. HsdM carried the NLS sequences, (7)KKAKAKK(13), in the N-terminus. A transient expression of HsdM-EGFP in COS-1 cells exhibited exclusively a nuclear localization of the fusion proteins, whereas the fusion proteins of HsdM with substitutions in residues lysine to alanine in the NLS sequences, (7)AAAKAAA(13), were localized in the cytoplasm. HsdM was co-localized with importin o in the nuclei of host cells. Recombinant HsdM alone methylated the eukaryotic DNA in vitro assay. Although HsdM tested in this study has not been considered to be a virulence factor, the prediction of NLS motifs from the full sequenced genome of bacteria extends our knowledge of functional genomics to understand subcellular targeting of bacterial proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12275-009-0217-4 | DOI Listing |
Arch Dermatol Res
January 2025
Department of Dermatology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
Acne vulgaris is a common and challenging condition to treat. To assess the effect of botulinum toxin type A (BTX-A) in the treatment of mild to moderate acne vulgaris. This study included 30 patients with mild to moderate acne vulgaris treated with intradermal injections of diluted BTX-A (microbotox) on the cheek in a regular grid pattern using very small droplets (microbotox).
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Stomatology, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
Treponema denticola, a bacterium that forms a "red complex" with Porphyromonas gingivalis and Tannerella forsythia, is associated with periodontitis, pulpitis, and other oral infections. The major surface protein (Msp) is a surface glycoprotein with a relatively well-established overall domain structure (N-terminal, central and C-terminal regions) and a controversial tertiary structure. As one of the key virulence factors of T.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India.
In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Huadong Medical Institute of Biotechniques, Nanjing, China.
Acetaminophen induced acute liver injury (ALI) has a high incidence and is a serious medical problem, but there is a lack of effective treatment. The enterohepatic axis is one of the targets of recent attention due to its important role in liver diseases. Disulfiram (DSF) is a multitarget drug that has been proven to play a role in a variety of liver diseases and can affect intestinal flora, but whether it can alleviate ALI is not clear.
View Article and Find Full Text PDFLett Appl Microbiol
January 2025
Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University.
MRSA's resistance poses a global health challenge. This study investigates lysine succinylation in MRSA using proteomics and bioinformatics approaches to uncover metabolic and virulence mechanisms, with the goal of identifying novel therapeutic targets. Mass spectrometry and bioinformatics analyses mapped the MRSA succinylome, identifying 8 048 succinylation sites on 1 210 proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!