Influences of sex, habitat, and seasonality on heavy-metal concentrations in the burrowing crab (Neohelice granulata) from a coastal lagoon in Argentina.

Arch Environ Contam Toxicol

Area Oceanografía Química, Instituto Argentino de Oceanografía, Complejo Científico-Tecnológico Bahía Blanca, 8000, Bahía Blanca, Argentina.

Published: April 2010

Cadmium, chromium, copper, and manganese concentrations were determined in hepatopancreas of both sexes as well as in eggs at different embryonic development stages of the burrowing crab Neohelice granulata (Brachyura, Varunidae) from Mar Chiquita Coastal Lagoon, a biosphere reserve from Argentina, during a period of 1 year, to assess the bioaccumulation of metals associated with sex and seasonality. Furthermore, metal levels in associated superficial sediment samples were also determined. Two different "cangrejales," one in a mudflat and another one in a salt marsh, were studied. The results showed high concentrations of copper within the hepatopancreas, which was considered a strong reflection of high exposure of N. granulata to this metal. Metal accumulation in hepatopancreas from both study sites and sexes did not present significant differences, as did seasonality. In this sense, both spring and summer metal levels in hepatopancreas were the greatest. Eggs did not present differences in metal accumulation, with the exception of manganese, between sites or between crabs at different embryonic stages. For this metal, eggs from female crabs inhabiting mudflats showed higher levels than those from inhabiting salt marshes. Moreover, eggs in the late embryonic stage also showed the highest manganese concentrations. Metal levels in sediments, however, were similar in both sites. These are the first results of metal level in biota and sediments in this particular environment. Such results could be used as a baseline for the monitoring of metal levels in future studies in Mar Chiquita Coastal Lagoon.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00244-009-9405-9DOI Listing

Publication Analysis

Top Keywords

metal levels
16
coastal lagoon
12
metal
9
burrowing crab
8
crab neohelice
8
neohelice granulata
8
manganese concentrations
8
mar chiquita
8
chiquita coastal
8
metal accumulation
8

Similar Publications

Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants.

Plant Cell Rep

January 2025

MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.

The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.

View Article and Find Full Text PDF

Prenatal metal(loid) exposure and preterm birth: a systematic review of the epidemiologic evidence.

J Expo Sci Environ Epidemiol

January 2025

Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Background: Preterm birth (PTB) is a common pregnancy complication associated with significant neonatal morbidity. Prenatal exposure to environmental chemicals, including toxic and/or essential metal(loid)s, may contribute to PTB risk.

Objective: We aimed to summarize the epidemiologic evidence of the associations among levels of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), lead (Pb), and zinc (Zn) assessed during the prenatal period and PTB or gestational age at delivery; to assess the quality of the literature and strength of evidence for an effect for each metal; and to provide recommendations for future research.

View Article and Find Full Text PDF

A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!