Chiral separation is an important issue in pharmaceutical research and industries, because most organic compounds and biological molecules, including many drugs and food additives, are chiral compounds. DNA aptamers are a new group of chiral selectors; however, there still exists deficiencies in the understanding of the molecular basis of their chiral recognition. Herein, a comparative study of the DNA aptamer binding with L-argininamide (L-Arm) and its enantiomer (D-Arm) is investigated by spectroscopic and calorimetric methods. The effect of various experimental conditions such as temperature, pH and salt concentration on the L-Arm and D-Arm binding properties was studied in order to provide information about the chiral recognition mechanism of the DNA aptamer. An isothermal titration calorimetry study reveals that both L-Arm and D-Arm binding with the aptamer are enthalpy driven and entropy cost processes. The protonated amino group of both L-Arm and D-Arm participates in electrostatic interaction and this interaction is stronger for D-Arm than L-Arm binding with the aptamer. From the opposite behavior of the heat capacity change of the two enantiomers, we could suggest that L-Arm and D-Arm bind at different binding sites of the aptamer, resulting in different conformations of the binding complexes. In the binding mechanism, electrostatic interaction provided by the protonated amino group with the aptamer and the conformational change of the nucleic acid upon binding are major processes involved for chiral recognition in the DNA aptamer. This study provides information on chiral separation of D- and L-argininamide by the aptamer, which can be successfully achieved by varying the operation temperature based on the opposite heat capacity dependence of the enantiomers binding with the DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b907763d | DOI Listing |
Nat Mater
January 2025
Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
Machine learning algorithms have proven to be effective for essential quantum computation tasks such as quantum error correction and quantum control. Efficient hardware implementation of these algorithms at cryogenic temperatures is essential. Here we utilize magnetic topological insulators as memristors (termed magnetic topological memristors) and introduce a cryogenic in-memory computing scheme based on the coexistence of a chiral edge state and a topological surface state.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Chemistry Chinese Academy of Sciences, CAS Key Laboratory of Molecular Recognition and Function, CHINA.
A pair of axially chiral thermally activated delayed fluorescent (TADF) enantiomers, R-TCBN-ImEtPF6 and S-TCBN-ImEtPF6, with intrinsic ionic characteristics were efficiently synthesized by introducing imidazolium hexafluorophosphate to chiral TADF unit. The TADF imidazolium salts exhibited a high photoluminescence quantum yield (PLQY) of up to 92%, a small singlet-triplet energy gap (∆EST) of 0.04 eV, as well as reversible redox properties.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
While established guidelines exist for chirality in tetrahedral molecules, there is a notable absence of clear rules for recognizing metal-centered chirality in higher-coordination complexes. We develop decision trees to assess the likelihood of chirality-at-metal in coordination complexes with coordination numbers 4-9 with mono and bidentate ligands. Using binary decision rules based on shape, ligand type, and quantity, the trees classify complexes as chiral or achiral.
View Article and Find Full Text PDFACS Omega
January 2025
School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, 99 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
The integration of molecular docking and AM1 calculations has elucidated the complexation behavior of butylone enantiomers with methylated β-cyclodextrin derivatives. Our study reveals that butylone can adopt two distinct conformations within the β-cyclodextrin cavity, with one conformation being preferentially stabilized due to its favorable binding energy. This conformation preference is influenced by the methylation at the O2, O3, and O6 positions of β-cyclodextrin, which significantly affects complex stability and solvation properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University, School of Chemistry and Chemical Engineering, 163 Xianlin Avenu, 210023, Nanjing, CHINA.
Glycans, unlike uniformly charged DNA and compositionally diverse peptides, are typically uncharged and exhibit rich stereoisomeric diversity in the glycosidic bonds between two monosaccharide units. This heterogeneity of charge and the structural complexity present significant challenges for accurate analysis. Herein, we developed a novel single-molecule oligosaccharide sensor, OmpF nanopore.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!