Skeletal muscle maintenance and repair involve several finely coordinated steps in which pluripotent stem cells are activated, proliferate, exit the cell cycle and differentiate. This process is accompanied by activation of hundreds of muscle-specific genes and repression of genes associated with cell proliferation or pluripotency. Mechanisms controlling myogenesis are precisely coordinated and regulated in time to allow the sequence of activation/inactivation of genes expression. Muscular differentiation is the result of the interplay between several processes such as transcriptional induction, transcriptional repression and mRNA stability. mRNA stability is now recognized as an essential mechanism of control of gene expression. For instance, we previously showed that the endoribonuclease L (RNase L) and its inhibitor (RLI) regulates MyoD mRNA stability and consequently muscle differentiation.We now performed global gene expression analysis by SAGE to identify genes that were down-regulated upon activation of RNase L in C2C12 myogenic cells, a model of satellite cells. We found that RNase L regulates mRNA stability of factors implicated in the control of pluripotency and cell differentiation. Moreover, inappropriate RNase L expression in C2C12 cells led to inhibition of myogenesis and differentiation into adipocytes even when cells were grown in conditions permissive for muscle differentiation. Conversely, over-expression of RLI allowed muscle differentiation of myogenic C2C12 cells even in non permissive conditions.These findings reveal the central role of RNase L and RLI in controlling gene expression and cell fate during myogenesis. Our data should provide valuable insights into the mechanisms that control muscle stem cell differentiation and into the mechanism of metaplasia observed in aging or muscular dystrophy where adipose infiltration of muscle occurs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762314PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007563PLOS

Publication Analysis

Top Keywords

mrna stability
16
gene expression
12
endoribonuclease rnase
8
rnase regulates
8
myogenic cells
8
cell differentiation
8
c2c12 cells
8
muscle differentiation
8
cells
7
muscle
6

Similar Publications

IDO1 inhibits ferroptosis by regulating FTO-mediated m6A methylation and SLC7A11 mRNA stability during glioblastoma progression.

Cell Death Discov

January 2025

State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China.

Indoleamine 2, 3-dioxygenase 1 (IDO1) has been recognized as an enzyme involved in tryptophan catabolism with immunosuppressive ability. This study determined to investigate the impact of IDO1 on glioblastoma multiforme (GBM) cells. Here, we showed that the expression of IDO1 was markedly increased in patients with glioma and associated with GBM progression.

View Article and Find Full Text PDF

Downregulation of the Phosphatase PHLPP1 Contributes to NNK-induced Malignant Transformation of Human Bronchial Epithelial Cells (HBECs).

J Biol Chem

January 2025

Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University; Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China. Electronic address:

Cigarette smoking (CS) is one of the greatest health concerns, which can cause lung cancer. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific nitrosamine, and has been well-documented for its carcinogenic activity in both epidemiological and laboratory studies. PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and phosphatase and tensin homolog (PTEN) are two well-known phosphatase tumor suppressors that have been reported to be downregulated in human lung cancer tissues.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) has been associated with a significant fatality rate and persistent evolution in immunocompromised patients. In this prospective study, we aimed to determine the duration of excretion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 37 Tunisian patients with hematological malignancies (40.5% with lymphoma and 37.

View Article and Find Full Text PDF

The increasing challenges posed by plant viral diseases demand innovative and sustainable management strategies to minimize agricultural losses. Exogenous double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) represents a transformative approach to combat plant viral pathogens without the need for genetic transformation. This review explores the mechanisms underlying dsRNA-induced RNAi, highlighting its ability to silence specific viral genes through small interfering RNAs (siRNAs).

View Article and Find Full Text PDF

Preparation of pH-Responsive Tanshinone IIA-Loaded Calcium Alginate Nanoparticles and Their Anticancer Mechanisms.

Pharmaceutics

January 2025

State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, College of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China.

Tanshinone IIA (Tan IIA) is a lipophilic active constituent derived from the rhizomes and roots of (Danshen), a common Chinese medicinal herb. However, clinical applications of Tan IIA are limited due to its poor solubility in water. : To overcome this limitation, we developed a calcium alginate hydrogel (CA) as a hydrophilic carrier for Tan IIA, which significantly improved its solubility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!