Defining the molecular structure and function of synapses is a central theme in brain research. In Drosophila the Bruchpilot (BRP) protein is associated with T-shaped ribbons ("T-bars") at presynaptic active zones (AZs). BRP is required for intact AZ structure and normal evoked neurotransmitter release. By screening for mutations that affect the tissue distribution of Bruchpilot, we have identified a P-transposon insertion in gene CG11489 (location 79D) which shows high homology to mammalian genes for SR protein kinases (SRPKs). SRPKs phosphorylate serine-arginine rich splicing factors (SR proteins). Since proteins expressed from CG11489 cDNAs phosphorylate a peptide from a human SR protein in vitro, we name CG11489 the Drosophila Srpk79D gene. We have characterized Srpk79D transcripts and generated a null mutant. Mutation of the Srpk79D gene causes conspicuous accumulations of BRP in larval and adult nerves. At the ultrastructural level, these correspond to extensive axonal agglomerates of electron-dense ribbons surrounded by clear vesicles. Basic synaptic structure and function at larval neuromuscular junctions appears normal, whereas life expectancy and locomotor behavior of adult mutants are significantly impaired. All phenotypes of the mutant can be largely or completely rescued by panneural expression of SRPK79D isoforms. Isoform-specific antibodies recognize panneurally overexpressed GFP-tagged SRPK79D-PC isoform co-localized with BRP at presynaptic active zones while the tagged -PB isoform is found in spots within neuronal perikarya. SRPK79D concentrations in wild type apparently are too low to be revealed by these antisera. We propose that the Drosophila Srpk79D gene characterized here may be expressed at low levels throughout the nervous system to prevent the assembly of BRP containing agglomerates in axons and maintain intact brain function. The discovery of an SR protein kinase required for normal BRP distribution calls for the identification of its substrate and the detailed analysis of SRPK function for the maintenance of nervous system integrity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759580PMC
http://dx.doi.org/10.1371/journal.pgen.1000700DOI Listing

Publication Analysis

Top Keywords

srpk79d gene
12
axonal agglomerates
8
structure function
8
presynaptic active
8
active zones
8
drosophila srpk79d
8
gene characterized
8
nervous system
8
srpk79d
7
brp
6

Similar Publications

The role of SR protein kinases in regulating lipid storage in the Drosophila fat body.

Biochem Biophys Res Commun

March 2023

Division of Science, Penn State Berks, Reading, PA, USA. Electronic address:

The survival of animals during periods of limited nutrients is dependent on the organism's ability to store lipids during times of nutrient abundance. However, the increased availability of food in modern western society has led to an excess storage of lipids resulting in metabolic diseases. To better understand the genes involved in regulating lipid storage, genome-wide RNAi screens were performed in cultured Drosophila cells and one group of genes identified includes mRNA splicing factor genes.

View Article and Find Full Text PDF

Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons.

Elife

June 2017

Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States.

Precise coordination of synaptic connections ensures proper information flow within circuits. The activity of presynaptic organizing molecules signaling to downstream pathways is essential for such coordination, though such entities remain incompletely known. We show that LRP4, a conserved transmembrane protein known for its postsynaptic roles, functions presynaptically as an organizing molecule.

View Article and Find Full Text PDF

Defining the molecular structure and function of synapses is a central theme in brain research. In Drosophila the Bruchpilot (BRP) protein is associated with T-shaped ribbons ("T-bars") at presynaptic active zones (AZs). BRP is required for intact AZ structure and normal evoked neurotransmitter release.

View Article and Find Full Text PDF

Presynaptic, electron-dense, cytoplasmic protrusions such as the T-bar (Drosophila) or ribbon (vertebrates) are believed to facilitate vesicle movement to the active zone (AZ) of synapses throughout the nervous system. The molecular composition of these structures including the T-bar and ribbon are largely unknown, as are the mechanisms that specify their synapse-specific assembly and distribution. In a large-scale, forward genetic screen, we have identified a mutation termed air traffic controller (atc) that causes T-bar-like protein aggregates to form abnormally in motoneuron axons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!