Development of in-house rapid manufacturing of three-dimensional models in maxillofacial surgery.

Br J Oral Maxillofac Surg

Department of Oral & Maxillofacial Surgery, Nottingham University Hospitals NHS Trust, QMC Campus, Derby Road, Nottingham, NG7 2UH, United Kingdom.

Published: September 2010

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bjoms.2009.09.002DOI Listing

Publication Analysis

Top Keywords

development in-house
4
in-house rapid
4
rapid manufacturing
4
manufacturing three-dimensional
4
three-dimensional models
4
models maxillofacial
4
maxillofacial surgery
4
development
1
rapid
1
manufacturing
1

Similar Publications

All-in-one microfluidic immunosensing device for rapid and end-to-end determination of salivary biomarkers of cardiovascular diseases.

Biosens Bioelectron

December 2024

School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315200, China. Electronic address:

Routine screening for cardiovascular diseases (CVDs) through point-of-care assays for at-home or community-based testing of salivary biomarkers can significantly improve patient outcomes. However, its translatability has been hindered by a dearth of biosensing devices that streamline assay procedures for rapid biomarker quantitation. To address this challenge through end-to-end engineering, we developed an in-house, all-in-one microfluidic immunosensing device that integrates on-chip vibration-enhanced incubation, magnetic-assisted separation using immune magnetic bead probes, and colorimetric readout via absorbance measurements.

View Article and Find Full Text PDF

The outstanding performance of superconducting nanowire single-photon detectors (SNSPDs) has expanded their application areas from quantum technologies to astronomy, space communication, imaging, and LiDAR. As a result, there has been a surge in demand for these devices, that commercial products cannot readily meet. Consequently, more research and development efforts are being directed towards establishing in-house SNSPD manufacturing, leveraging existing nano-fabrication capabilities that can be customized and fine-tuned for specific needs.

View Article and Find Full Text PDF

Background: 3D technologies [Virtual and Augmented 3D planning, 3D printing (3DP), Additive Manufacturing (AM)] are rapidly being adopted in the healthcare sector, demonstrating their relevance in personalized medicine and the rapid development of medical devices. The study's purpose was to understand the state and evolution of 3DP/AM technologies at the Point-of-Care (PoC), its adoption, organization and process in Spanish hospitals and to understand and compare the evolution of the models, clinical applications, and challenges in utilizing the technology during the COVID-19 pandemic and beyond.

Methods: This was a questionnaire-based qualitative and longitudinal study.

View Article and Find Full Text PDF

In-House Immunoglobulin Y-Based Immunoassay for Detecting Benzo[a]pyrene in Grilled Pork Samples.

Biosensors (Basel)

December 2024

School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.

Benzo[a]pyrene (B[a]P) is a hazardous polycyclic aromatic hydrocarbon that accumulates in several environmental matrices as a result of incomplete combustion. Its presence, carcinogenic properties, and tendency for bioaccumulation provide significant risks to human health and the environment. The objective of this study is to create an immunoassay for the detection of benzo[a]pyrene utilizing immunoglobulin Y antibodies.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the dosiomics features of the interplay between CT density and dose distribution in lung SBRT plans, and to develop a model to predict treatment failure following lung SBRT treatment.

Methods: A retrospective study was conducted involving 179 lung cancer patients treated with SBRT at the University of Nebraska Medical Center (UNMC) between October 2007 and June 2022. Features from the CT image, Biological Effective Dose (BED) and five interaction matrices between CT and BED were extracted using radiomics mathematics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!