Homocysteine decreases extracellular nucleotide hydrolysis in rat platelets.

Thromb Res

Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Published: March 2010

Hyperhomocysteinemia is an independent risk factor for atherothrombotic disease. Platelets play an important role in cardiovascular disease and release pro-aggregates mediators when activated, such as ADP, a physiological agonist involved in normal hemostasis and thrombosis. NTPDases and 5'-nucleotidase are ecto-enzymes that hydrolyze ATP, ADP and AMP to adenosine playing an important role on blood flow and thrombogenesis by regulating ADP catabolism. The aim of the present study was evaluate extracellular adenine nucleotide hydrolysis of rat platelets exposed to homocysteine in vitro and in vivo. In vitro homocysteine (Hcy) in the concentration range of 20 to 500 microM caused a significant decrease on ATP (around 30%) and ADP (around 45%) hydrolysis, respectively, while AMP hydrolysis was not altered. Hcy was not able to inhibit the hydrolysis of ATP and ADP catalyzed by purified apyrase at the same concentrations tested in vitro on platelets, suggesting an indirect effect. The inhibitory effect of Hcy on platelets was prevented by antioxidants agents in vitro and in vivo. Furthermore homocysteine treatment increased platelet aggregation induced by ADP. Based on the results presented herein, we propose that inhibition of extracellular ATP and ADP hydrolysis caused by homocysteine was probably due oxidative stress, since antioxidants prevented such effects. These findings may contribute to an increase platelet response to ADP and consequence development of thrombotic risk attributed to hyperhomocysteinemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.thromres.2009.09.020DOI Listing

Publication Analysis

Top Keywords

atp adp
12
nucleotide hydrolysis
8
hydrolysis rat
8
rat platelets
8
adp
8
vitro vivo
8
hydrolysis
6
homocysteine
5
platelets
5
homocysteine decreases
4

Similar Publications

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

An Addendum to the Chemiosmotic Theory of Mitochondrial Activity: The Role of RNA as a Proton Sink.

Biomolecules

January 2025

School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.

Mitochondrial ATP synthesis is driven by harnessing the electrochemical gradient of protons (proton motive force) across the mitochondrial inner membrane via the process of chemiosmosis. While there is consensus that the proton gradient is generated by components of the electron transport chain, the mechanism by which protons are supplied to ATP synthase remains controversial. As opposed to a global coupling model whereby protons diffuse into the intermembrane space, a localised coupling model predicts that protons remain closely associated with the lipid membrane prior to interaction with ATP synthase.

View Article and Find Full Text PDF

This study investigated the mechanisms employed by exogenous dopamine application in alleviating chilling injury in kiwifruits during storage at 1 °C for 120 days. Our results indicated that dopamine treatment at 150 µM alleviated chilling injury in kiwifruits during storage at 1 °C for 120 days. By 150 µM dopamine application, higher SUMO E3 ligase (SIZ1) and target of rapamycin (TOR) genes expression accompanied by lower poly(ADP-Ribose) polymerase 1 (PARP1) and sucrose non-fermenting 1-related kinase 1 (SnRK1) genes expression was associated with higher salicylic acid, ATP, NADPH and proline accumulation in kiwifruits during storage at 1 °C for 120 days.

View Article and Find Full Text PDF

Introduction: CD38, a regulator of intracellular calcium signalling, is highly expressed in immune cells. Mice lacking CD38 are very susceptible to acute bacterial infections, implicating CD38 in innate immune responses. The effects of CD38 inhibition on NLRP3 inflammasome activation in human primary monocytes and monocyte-derived macrophages have not been investigated.

View Article and Find Full Text PDF

Electric Forces and ATP Synthesis.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

ATP synthase is a rotary motor enzyme that drives the formation of ATP from ADP and P and uses multiple electrical forces to do this. This chapter outlines the exquisite use of these electrical forces to generate the high energy phosphates on which all our lives depend. Vacuolar ATPases and the ADP/ATP carrier also are explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!