Proteomic analysis in NSAIDs-treated primary cardiomyocytes.

J Proteomics

Department of Biochemistry, Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, Republic of Korea.

Published: February 2010

NSAIDs (non-steroidal anti-inflammatory drugs) are widely used for the treatment of a variety of inflammatory diseases, but many of them were withdrawn from the market due to their cardiovascular toxicity. In this study, we tried to identify proteins responding to the cellular toxicity in NSAIDs-treated primarily cultured cardiomyocytes using 2-D proteomic analysis. We used seven different NSAIDs (celecoxib, rofecoxib, valdecoxib, diclofenac, naproxen, ibuprofen, and meloxicam) possessing each different degree of cardiovascular risk. Overall protein spots were similar in all NSAIDs-treated cells although numbers of decreased proteins were about 2-fold higher in celecoxib or rofecoxib-treated cells than in cells incubated with other NSAIDs. Many stress-related proteins, cardiac muscle movement proteins and proteins involved in membrane organization have been isolated. Among them, Septin-8, a filament scaffolding protein, showed its specific expression pattern depending on the extent of drug toxicity. Its expression level was low in cells treated by relatively high toxic drugs such as celecoxib, diclofenac, valdecoxib, and rofecoxib. On the contrary, Septin-8 was similarly expressed in control cells in the presence of less toxic drugs such ibuprofen, naproxen, and meloxicam. This data suggests that Septin-8 differentially responds to each NSAID.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2009.10.004DOI Listing

Publication Analysis

Top Keywords

proteomic analysis
8
toxic drugs
8
proteins
5
cells
5
analysis nsaids-treated
4
nsaids-treated primary
4
primary cardiomyocytes
4
cardiomyocytes nsaids
4
nsaids non-steroidal
4
non-steroidal anti-inflammatory
4

Similar Publications

Article Synopsis
  • Primary ciliary dyskinesia (PCD) is a rare genetic disorder linked to chronic respiratory issues, infertility, and problems with body asymmetry, primarily caused by mutations in the CCDC39 and CCDC40 genes.
  • Researchers used advanced techniques to investigate how these genetic variants impact cellular functions beyond just causing cilia to stop moving.
  • They discovered that the absence of CCDC39/CCDC40 creates a significant loss of over 90 ciliary structural proteins, leading to cilia dysfunction and other cellular issues, suggesting that gene therapy could potentially offer a new treatment strategy for PCD.
View Article and Find Full Text PDF

The daily light-dark cycle is a recurrent and predictable environmental phenomenon to which many organisms, including cyanobacteria, have evolved to adapt. Understanding how cyanobacteria alter their metabolic attributes in response to subjective light or dark growth may provide key features for developing strains with improved photosynthetic efficiency and applications in enhanced carbon sequestration and renewable energy. Here, we undertook a label-free proteomic approach to investigate the effect of extended light (LL) or extended dark (DD) conditions on the unicellular cyanobacterium ATCC 51142.

View Article and Find Full Text PDF

Background: Cell therapy demonstrates promising potential as a substitute therapeutic approach for liver cirrhosis. We have developed a strategy to effectively expand murine and human hepatocyte-derived liver progenitor-like cells (HepLPCs) in vitro. The primary objective of the present study was to apply HepLPCs to the treatment of liver cirrhosis and to elucidate the underlying mechanisms responsible for their therapeutic efficacy.

View Article and Find Full Text PDF

Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.

View Article and Find Full Text PDF

Single-Cell Proteomics Uncovers Dual Traits of Dermal Sheath Cells in Wound Repair.

Adv Wound Care (New Rochelle)

January 2025

Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China.

Wound healing is a dynamic process involving multiple cell types and signaling pathways. Dermal sheath cells (DSCs), residing surrounding hair follicles, play a critical role in tissue repair, yet their regulatory mechanisms remain unclear. This study used single-cell proteomics with the mouse model to explore DSC function across different healing stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!