Development and ripening in fruit is a unique phase in the life cycle of higher plants which encompasses several stages progressively such as fruit development, its maturation, ripening and finally senescence. During ripening phase, several physiological and biochemical changes take place through differential expression of various genes that are developmentally regulated. Expression and/or suppression of these genes contribute to various changes in the fruit that make it visually attractive and edible. However, in fleshy fruit massive losses accrue during post harvest handling of the fruit which may run into billions of dollars worldwide. This encouraged scientists to look for various ways to save these losses. Genetic engineering appears to be the most promising and cost effective means to prevent these losses. Most fleshy fruit ripen in the presence of ethylene and once ripening has been initiated proceeds uncontrollably. Ethylene evokes several responses during ripening through a signaling cascade and thousands of genes participate which not only sets in ripening but also responsible for its spoilage. Slowing down post ripening process in fleshy fruit has been the major focus of ripening-related research. In this review article, various developments that have taken place in the last decade with respect to identifying and altering the function of ripening-related genes have been described. Role of ethylene and ethylene-responsive genes in ripening of fleshy fruit is also included. Taking clues from the studies in tomato as a model fruit, few case studies are reviewed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2009.10.002DOI Listing

Publication Analysis

Top Keywords

fleshy fruit
20
fruit
10
ripening
9
ripening fleshy
8
role ethylene
8
genes
5
fruit molecular
4
molecular insight
4
insight role
4
ethylene
4

Similar Publications

Lonicera caerulea genome reveals molecular mechanisms of freezing tolerance and anthocyanin biosynthesis.

J Adv Res

December 2024

Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China. Electronic address:

Introduction: Lonicera caerulea L. (blue honeysuckle) is a noteworthy fleshy-fruited tree and a prominent medicinal plant, which possesses notable characteristics such as exceptional resilience to winter conditions and early maturation, and the richest source of functional anthocyanins, particularly cyanidin-3-glucoside. The molecular mechanisms responsible for its freezing tolerance and anthocyanin biosynthesis remain largely unknown.

View Article and Find Full Text PDF

High carbohydrate availability promotes malic acid accumulation in fleshy fruits, but the underlying mechanism is not known. Here, we show that antisense repression of ALDOSE-6-PHOSPHATE REDUCTASE in apple (Malus domestica) decreases the concentrations of sorbitol and malate and the transcript levels of several genes involved in vacuolar malate transport, including the aluminum-activated malate transporter (ALMT) gene MdALMT9 (Ma1), the P-ATPase gene MdPH5, the MYB transcription factor gene MdMYB73, and the cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1, in fruit and leaves. We identified a linker histone H1 variant, MdH1.

View Article and Find Full Text PDF

CsCPC, an R3-MYB transcription factor, acts as a negative regulator of citric acid accumulation in Citrus.

Plant J

December 2024

National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.

The citric acid accumulation during fruit ripening determines the quality of fleshy fruits. However, the molecular mechanism underlying citric acid accumulation is not clearly understood yet in citrus due to the scarcity of paired germplasm that exhibits significant difference in organic acid accumulation. Two citrus triploid hybrids with distinct citric acid content in their mature fruits were herein identified from a previously conducted interploidy cross in our group, providing an ideal paired material for studying acid accumulation in citrus.

View Article and Find Full Text PDF

Characterization of ZAT12 protein from Prunus persica: role in fruit chilling injury tolerance and identification of gene targets.

Planta

December 2024

Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.

PpZAT12, a transcription factor differentially expressed in peach varieties with distinct susceptibility tochilling injury (CI), is a potential candidate gene for CI tolerance by regulating several identified gene targets. ZAT (zinc finger of Arabidopsis thaliana) proteins play roles in multiple abiotic stress tolerance in Arabidopsis and other species; however, there are few reports on these transcription factors (TFs) in fruit crops. This study aimed to evaluate PpZAT12, a C2H2 TF up-regulated in peach fruit by a heat treatment applied before postharvest cold storage for reducing chilling injury (CI) symptoms.

View Article and Find Full Text PDF

Consumers employ a variety of foraging strategies, and oftentimes the foraging strategy employed is related to resource availability. As consumers acquire resources, they may interact with their resource base in mutualistic or antagonistic ways-falling along a mutualism-antagonism continuum-with implications for ecological processes such as seed dispersal. However, patterns of resource use vary temporally, and textbook herbivores may switch foraging tactics to become more frugivorous in periods of greater fleshy fruit availability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!