Aza-peptide Michael acceptors and epoxides with the general structure of YCO-Ala-Ala-AAsn-trans-CH horizontal lineCHCOR and YCO-Ala-Ala-AAsn-EP-COR, respectively, are shown to be potent inhibitors of asparaginyl endopeptidases (legumains) from the bloodfluke, Schistosoma mansoni (SmAE), and the hard tick, Ixodes ricinus (IrAE). Structure-activity relationships (SARs) were determined for a set of 41 aza-peptide Michael acceptors and eight aza-peptide epoxides. Both enzymes prefer disubstituted amides to monosubstituted amides in the P1' position, and potency increased as we increased the hydrophobicity of the inhibitor in this position. Extending the inhibitor to P5 resulted in increased potency, especially against IrAE, and both enzymes prefer small over large hydrophobic residues at P2. Aza-peptide Michael acceptor inhibitors are more potent than aza-peptide epoxide inhibitors, and for some of these compounds, second-order inhibiton rate constants are the fastest yet discovered. Given the central functions of these enzymes in both parasites, the data presented here may facilitate the eventual design of selective antiparasitic drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm900849hDOI Listing

Publication Analysis

Top Keywords

aza-peptide michael
12
michael acceptor
8
schistosoma mansoni
8
ixodes ricinus
8
asparaginyl endopeptidases
8
michael acceptors
8
enzymes prefer
8
aza-peptide
5
aza-peptidyl michael
4
acceptor epoxide
4

Similar Publications

Aza-peptide Michael acceptors and epoxides with the general structure of YCO-Ala-Ala-AAsn-trans-CH horizontal lineCHCOR and YCO-Ala-Ala-AAsn-EP-COR, respectively, are shown to be potent inhibitors of asparaginyl endopeptidases (legumains) from the bloodfluke, Schistosoma mansoni (SmAE), and the hard tick, Ixodes ricinus (IrAE). Structure-activity relationships (SARs) were determined for a set of 41 aza-peptide Michael acceptors and eight aza-peptide epoxides. Both enzymes prefer disubstituted amides to monosubstituted amides in the P1' position, and potency increased as we increased the hydrophobicity of the inhibitor in this position.

View Article and Find Full Text PDF

Aza-peptide Michael acceptors with the general structure of Cbz-Ala-Ala-AAsn- trans-CH=CHCOR are a new class of inhibitors specific for the asparaginyl endopeptidases (AE) (legumains). Structure-activity relationships (SARs) were characterized for a set of 31 aza-peptide Michael acceptors with AEs derived from three medically important parasites: the protist Trichomonas vaginalis, the hard tick Ixodes ricinus, and the flatworm Schistosoma mansoni. Despite arising from phylogenetically disparate organisms, all three AEs shared a remarkably similar SAR with lowest IC50 values extending into the picomolar range.

View Article and Find Full Text PDF

Activity-Based Probes (ABPs) are small molecules that form stable covalent bonds with active enzymes thereby allowing detection and quantification of their activities in complex proteomes. A number of ABPs that target proteolytic enzymes have been designed based on well-characterized mechanism-based inhibitors. We describe here the evaluation of a novel series of ABPs based on the aza-aspartate inhibitory scaffold.

View Article and Find Full Text PDF

Aza-peptide Michael acceptors are a novel class of inhibitors that are potent and specific for caspases-2, -3, -6, -7, -8, -9, and -10. The second-order rate constants are in the order of 10(6) M(-1) s(-1). The aza-peptide Michael acceptor inhibitor 18t (Cbz-Asp-Glu-Val-AAsp-trans-CH=CH-CON(CH(2)-1-Naphth)(2) is the most potent compound and it inhibits caspase-3 with a k(2) value of 5620000 M(-1) s(-1).

View Article and Find Full Text PDF

Aza-peptide Michael acceptors: a new class of inhibitors specific for caspases and other clan CD cysteine proteases.

J Med Chem

April 2004

School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.

Aza-peptide Michael acceptors are a new class of irreversible inhibitors that are highly potent and specific for clan CD cysteine proteases. The aza-Asp derivatives were specific for caspases, while aza-Asn derivatives were effective legumain inhibitors. Aza-Lys and aza-Orn derivatives were potent inhibitors of gingipain K and clostripain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!