Proton NMR of (15)N-choline metabolites enhanced by dynamic nuclear polarization.

J Am Chem Soc

Laboratory for Biomolecular Magnetic Resonance, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland.

Published: November 2009

Chemical shifts of protons can report on metabolic transformations such as the conversion of choline to phosphocholine. To follow such processes in vivo, magnetization can be enhanced by dynamic nuclear polarization (DNP). We have hyperpolarized in this manner nitrogen-15 spins in (15)N-labeled choline up to 3.3% by irradiating the 94 GHz electron spin resonance of admixed TEMPO nitroxide radicals in a magnetic field of 3.35 T during ca. 3 h at 1.2 K. The sample was subsequently transferred to a high-resolution magnet, and the enhanced polarization was converted from (15)N to methyl- and methylene protons, using the small (2,3)J((1)H,(15)N) couplings in choline. The room-temperature lifetime of nitrogen polarization in choline, T(1)((15)N) approximately 200 s, could be considerably increased by partial deuteration of the molecule. This procedure enables studies of choline metabolites in vitro and in vivo using DNP-enhanced proton NMR.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja9021304DOI Listing

Publication Analysis

Top Keywords

proton nmr
8
enhanced dynamic
8
dynamic nuclear
8
nuclear polarization
8
choline
5
nmr 15n-choline
4
15n-choline metabolites
4
metabolites enhanced
4
polarization
4
polarization chemical
4

Similar Publications

Highly Efficient Analysis on Biomass Carbohydrate Mixtures by DREAMTIME NMR Spectroscopy.

Anal Chem

December 2024

Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen 361005, China.

Proton (H) NMR spectroscopy presents a powerful tool for biomass mixture studies by revealing the involved chemical compounds with identified ingredients and molecular structures. However, conventional H NMR generally suffers from spectral congestion when measuring biomass mixtures, particularly biomass carbohydrate samples, that contain various physically and chemically similar compounds. In this study, a targeted detection NMR approach, DREAMTIME, is exploited for studying biomass carbohydrate mixtures by spectroscopically targeting the desired compounds in separate 1D NMR spectra.

View Article and Find Full Text PDF

Background: In magnetic resonance imaging (MRI) segmentation research, the choice of sequence influences the segmentation accuracy. This study introduces a method to compare sequences. By aligning sequences with specific segmentation objectives, we provide an example of a comparative analysis of various sequences for knee images.

View Article and Find Full Text PDF

Intracranial hemorrhage associated with primary or metastatic brain tumors is a critical condition that requires urgent intervention, often through open surgery. Nevertheless, surgical interventions may not always be feasible due to two main reasons: (1) extensive hemorrhage can obscure the underlying tumor mass, limiting radiological assessment; and (2) intracranial hemorrhage may occasionally present as the first symptom of a brain tumor without prior knowledge of its existence. The current review of case studies suggests that advanced radiological imaging techniques can improve diagnostic power for tumoral hemorrhage.

View Article and Find Full Text PDF

An imbalance in the body's pH or temperature may modify the immune response and result in ailments such as autoimmune disorders, infectious diseases, cancer, or diabetes. Dual pH- and thermo-responsive carriers are being evaluated as advanced drug delivery microdevices designed to release pharmaceuticals in response to external or internal stimuli. A novel drug delivery system formulated as hydrogel was developed by combining a pH-sensitive polymer (the "biosensor") with a thermosensitive polymer (the delivery component).

View Article and Find Full Text PDF

Polar Networks Mediate Ion Conduction of the SARS-CoV-2 Envelope Protein.

J Am Chem Soc

December 2024

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.

The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!