Study Objectives: To analyze sleep architecture of children with dyslexia, by means of conventional parameters and EEG spectral analysis and to correlate sleep parameters and EEG spectra with neuropsychological measures.
Design: Cross-sectional study involving validated sleep questionnaires, neuropsychological scales, and polysomnographic recordings.
Setting: Sleep laboratory in academic center.
Participants: Sixteen subjects with developmental dyslexia (mean age 10.8 years) and 11 normally reading children (mean age 10.1 years). All the subjects underwent overnight polysomnographic recording; EEG power spectra were computed from the Cz derivation and spindle density was calculated during sleep stages N2.
Intervention: N/A.
Measurements And Results: Dyslexic children showed an increase in power of frequency bands between 0.5-3 Hz and 11-12 Hz in stage N2 and between 0.5-1 Hz in stage N3; they also showed significantly increased spindle density during N2. The power of the sigma band in N2 was positively correlated with the Word reading and MT reading tests; similarly, spindle density was significantly correlated with the Word reading test. The increased spindle activity and EEG sigma power in dyslexic subjects were found to be correlated with the degree of dyslexic impairment.
Conclusions: The correlation found between sleep spindle activity and reading abilities in developmental dyslexia supports the hypothesis of a role for NREM sleep and spindles in sleep-related neurocognitive processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753811 | PMC |
http://dx.doi.org/10.1093/sleep/32.10.1333 | DOI Listing |
PLoS Genet
January 2025
Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.
During chromosome segregation, the spindle assembly checkpoint (SAC) detects errors in kinetochore-microtubule attachments. Timely activation and maintenance of the SAC until defects are corrected is essential for genome stability. Here, we show that shugoshin (Sgo1), a conserved tension-sensing protein, ensures the maintenance of SAC signals in response to unattached kinetochores during mitosis in a basidiomycete budding yeast Cryptococcus neoformans.
View Article and Find Full Text PDFNeurology
January 2025
Department of Neurology, Massachusetts General Hospital, Boston.
Background And Objectives: Rolandic epilepsy (RE), the most common childhood focal epilepsy syndrome, is characterized by a transient period of sleep-activated epileptiform activity in the centrotemporal regions and variable cognitive deficits. Sleep spindles are prominent thalamocortical brain oscillations during sleep that have been mechanistically linked to sleep-dependent memory consolidation in animal models and healthy controls. Sleep spindles are decreased in RE and related sleep-activated epileptic encephalopathies.
View Article and Find Full Text PDFSSNA-1 is a fibrillar protein localized at the area where dynamic microtubule remodeling occurs including centrosomes. Despite the important activities of SSNA1 to microtubules such as nucleation, co-polymerization, and lattice sharing microtubule branching, the underlying molecular mechanism have remained unclear due to a lack of structural information. Here, we determined the cryo-EM structure of SSNA-1 at 4.
View Article and Find Full Text PDFCureus
December 2024
Pathology, Avalon University School of Medicine, Willemstad, CUW.
Dermatofibrosarcoma protuberans (DFSP) is a rare, locally invasive cutaneous sarcoma with a high propensity for recurrence, even following complete surgical excision. DFSP exhibits a low metastatic potential and is characterized by a distinctive honeycomb-like architecture composed of uniformly arranged spindle cells that frequently show CD34 immunostaining. Common surgical approaches include wide local excision (WLE), Mohs micrographic surgery (MMS), and, in severe cases, amputation.
View Article and Find Full Text PDFTheriogenology
January 2025
Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!