In situ speciation measurements of trace metals in headwater streams.

Environ Sci Technol

Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster EA1 4YQ, United Kingdom.

Published: October 2009

Concentrations of Al, Fe, Mn, Ni, Cu, Cd, Pb, and Zn were measured using DGT (diffusive gradients in thin-films) devices deployed in situ in 34 headwater streams in Northern England. Mean values of filtered samples analyzed by ICP-MS (inductively coupled plasma mass spectrometry) were used, along with DOC (dissolved organic carbon), pH and major ions, to calculate the distribution of metal species using the speciation code WHAM. DGT-measured concentrations, [Me]DGT, of Zn and Cd were generally similar to concentrations in filtered samples, [Me]filt. For the other metals, [Me]DGT was similar to or lower than [Me]filt. Calculation of the maximum dynamic metal from the speciation predicted using WHAM showed that most of the lower values of [Cu]DGT could be attributed to the dominance of Cu-fulvic acid complexes, which diffuse more slowly than simple inorganic species. Similar calculations for Al, Pb, and Mn were consistent with appreciable proportions of these metals being present as colloids that are not simple complexes with humic substances. Differences between WHAM predictions and the measured [Ni]DGT indicated that WHAM used with the default binding parameters underestimates Ni binding to natural organic matter. Plots of [Me]DGT versus the ratio of bound metal to DOC provided slight evidence of heterogeneous binding of Pb and Cu, while results for Mn, Cd, and Zn were consistent with weak binding and complete lability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es900112wDOI Listing

Publication Analysis

Top Keywords

headwater streams
8
filtered samples
8
situ speciation
4
speciation measurements
4
measurements trace
4
trace metals
4
metals headwater
4
streams concentrations
4
concentrations measured
4
measured dgt
4

Similar Publications

Microplastics (MPs) are ubiquitous in river and freshwater ecosystems. However, the hydraulic and hydrological mechanisms that regulate the activation and emissions of MPs from both the land surface and subsurface into rivers are not well understood. This study aims to quantify the instream MP concentration and MP load in a remote headwater catchment river (Taff Bargoed, Wales UK), which drains the UK's largest opencast coal mine (Ffos-y-fran), over a two-year period.

View Article and Find Full Text PDF

Notable ecological risks of microplastics to Minjiang River ecosystem over headwater to upstream in Eastern Qinghai-Tibetan Plateau.

Water Res

January 2025

CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China. Electronic address:

Microplastics (MPs) in aquatic environments has been observed globally. However, the ecological risks of MP pollution in riverhead prior to highly urbanized region remain poorly understood. This study investigated MP pollution related to microbiome in sediments, and ecological risks of MPs in riverhead prior to urbanized area over 291 km of Minjiang River (MJR) in Qinghai-Tibetan Plateau (QTP).

View Article and Find Full Text PDF

Impacts of climate change on storm event-based flow regime and channel stability of urban headwater streams.

J Environ Manage

January 2025

Tetra Tech, Inc., P.O. Box 14409, Research Triangle Park, NC, 27709, United States. Electronic address:

Due to the recent improved availability of global and regional climate change (CC) models and associated data, the projected impact of CC on urban stormwater management is well documented. However, most studies are based on simplified design storm analysis and unit-area runoff models; evaluations of the long-term, continuous hydrologic response of extensive stormwater control measures (SCM) implementation under future CC scenarios are limited. Moreover, channel stability in response to CC is seldom evaluated due to the input data required to develop a long-term, continuous sediment transport model.

View Article and Find Full Text PDF

Biodiversity spatial distribution of benthic macroinvertebrate assemblages is influenced by anthropogenic disturbances at multiple spatial extents.

Sci Total Environ

January 2025

Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Ecologia de Bentos, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil.

Understanding the patterns and mechanisms of biodiversity and its organization in space is essential for developing effective conservation strategies. Zeta diversity is an index of how taxa are shared by several sites, providing information on how ecological filters, including anthropogenic disturbances, influence biodiversity distribution. This study documents how anthropogenic disturbances at multiple spatial extents affect the spatial variation of benthic macroinvertebrate assemblages in lotic ecosystems.

View Article and Find Full Text PDF
Article Synopsis
  • Wildfire regimes are altering, raising concerns for aquatic ecosystems and fish species, as predicting fish responses can be complex due to multiple wildfire impacts.
  • Whole-ecosystem approaches like food web modeling can help understand these interactions, showing how different wildfire severities affect aquatic life dynamics in streams.
  • Simulations reveal that wildfires can have varying effects on periphyton, invertebrates, and fish biomass, influenced by fire severity and environmental changes, indicating a need to consider context when assessing wildfire impacts on aquatic ecosystems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!