The effectiveness of hydroxycinnamic acids (HCAs), that is, caffeic acid (CaA), chlorogenic acid (ChA), sinapic acid (SA), ferulic acid (FA), 3-hydroxycinnamic acid (3-HCA), and 4-hydroxycinnamic acid (4-HCA), as pBR322 plasmid DNA-cleaving agents in the presence of Cu(II) ions was investigated. Compounds bearing o-hydroxy or 3,5-dimethoxy groups on phenolic rings (CaA, SA, and ChA) were remarkably more effective at causing DNA damage than the compounds bearing no such groups; furthermore, CaA was the most active among the HCAs examined. The involvement of reactive oxygen species (ROS) and Cu(I) ions in the DNA damage was affirmed by the inhibition of the DNA breakage by using specific scavengers of ROS and a Cu(I) chelator. The interaction between CaA and Cu(II) ions and the influence of ethylenediaminetetraacetic acid (EDTA), the solvent, and pH value on the interaction were also studied to help elucidate the detailed prooxidant mechanism by using UV/Vis spectroscopic analysis. On the basis of these observations, it is proposed that it is the CaA phenolate anion, instead of the parent molecule, that chelates with the Cu(II) ion as a bidentate ligand, hence facilitating the intramolecular electron transfer to form the corresponding CaA semiquinone radical intermediate. The latter undergoes a second electron transfer with oxygen to form the corresponding o-quinone and a superoxide, which play a pivotal role in the DNA damage. The intermediacy of the semiquinone radical was supported by isolation of its dimer from the Cu(II)-mediated oxidation products. Intriguingly, CaA was also the most cytotoxic compound among the HCAs toward human promyelocytic leukemia (HL-60) cell proliferation. Addition of exogenous Cu(II) ions resulted in an effect dichotomy on cell viability depending on the concentration of CaA; that is, low concentrations of CaA enhanced the cell viability and, conversely, high concentrations of CaA almost completely inhibited the cell proliferation. On the other hand, when superoxide dismutase was added before, the two stimulation effects of exogenous Cu(II) ions were significantly ameliorated, thus clearly indicating that the oxidative-stress level regulates cell proliferation and death. These findings provide direct evidence for the antioxidant/prooxidant mechanism of cancer chemoprevention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200901627 | DOI Listing |
Water Res
January 2025
China Electronics System Engineering No.2 Construction Co., Ltd., Wuxi 214115, PR China.
Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Science, Islamic University of Madinah, Al-Jamia, Madinah, 42351, Saudi Arabia.
This study focuses on the synthesis of a novel Cerium-Magnesium (CeO-MgO) binary oxide nanomaterials by a simple co-precipitation process and used to remove harmful pollutants such as Cr(VI), Cu(II), and F. The morphology, phase, crystallite size, thermal stability, functional groups, surface area, and porosity of the synthesized nanomaterial were determined by using XRD, SEM, FTIR, TGA/DTA, and BET studies. The prepared nanomaterials showed adsorption selectivity of Cu(II) ≈ F> Cr(VI) with a high adsorption capacity of 84.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
Imaging abnormal copper/iron with effective fluorescent tools is essential to comprehensively put insight into many pathological events. However, conventional coordination-based detection is mired in the fluorescence quenching induced by paramagnetic Cu(II)/Fe(III). Moreover, the strong chelating property of the probe will consume dissociative metal ions and inevitably interfere with the physiological microenvironment.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland.
Background: Ecotoxicology is essential for the evaluation and comprehension of the effects of emergency pollutants (EP) such as heavy metal ions on the natural environment. EPs pose a substantial threat to the health of humans and the proper functioning of the global ecosystem. The primary concern is the exposure of humans and animals to heavy metal ions through contaminated water.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol CY-3021, Cyprus.
Some specific anthraquinone derivatives (AQs) are known to be used widely as effective chemotherapeutic agents in the treatment of cancer. However, their fundamental shortcoming is the high rate of cardiotoxicity observed in treated patients, which is thought to be caused by the increase in production of reactive oxygen species (ROS) catalyzed by iron and copper. The development of improved AQs and other anticancer drugs with enhanced efficacy but reduced toxicity remains a high priority.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!