[The brain mechanism of memory encoding and retrieval: a review on the fMRI studies].

Sheng Li Xue Bao

Center for Studies of Psychological Application, Institute of Cognitive Neuroscience, South China Normal University, Guangzhou 510631, China.

Published: October 2009

Memory encoding and memory retrieval are two important processes of the memory. The main results of studies on the neural basis of the memory encoding and memory retrieval by functional magnetic resonance image (fMRI) technique were summarized in this review. The neural basis of memory encoding and retrieval phases varies with different materials, memory types, and age stages. It means that the neural networks of these memory activities are separate. The functional locations of the activated brain areas during memory encoding and during memory retrieval phases are overlapped with distinction. The activated brain areas of memory encoding mainly locate in the prefrontal lobe, the temporal lobe, the parietal lobe, the anterior hippocampus, the thalamus, and the basal ganglia (including the striatum and the marginal division of the striatum). The activated brain areas of memory retrieval mainly locate in the prefrontal lobe, the temporal lobe, the entorhinal cortex, the perirhinal cortex, the posterior hippocampus, the thalamus, and the basal ganglia. The anterior hippocampus is mainly activated during the encoding phase, whereas posterior hippocampus is mainly activated during the retrieval phase. The intensity of the activated cerebral cortex regions during the encoding phase is stronger than that during the retrieval phase, whereas the opposite activated pattern is found in the subcortical structures, mainly the basal ganglia and thalamus, during the two phases. It seems that the stimulation might activate certain cerebral cortex areas during the memory encoding phase, then the information is transported to the subcortical structures and comes back to the cerebral cortex to complete the memory retrieval phase. The encoding and retrieval phases of the memory are supposed to be accomplished by a neural circuit among the cerebral cortex, basal ganglia, thalamus and cerebral cortex, rather than the cerebral cortex only.

Download full-text PDF

Source

Publication Analysis

Top Keywords

memory encoding
28
cerebral cortex
24
memory retrieval
20
memory
16
areas memory
16
basal ganglia
16
encoding retrieval
12
encoding memory
12
retrieval phases
12
activated brain
12

Similar Publications

Surface electromyography (sEMG) data has been extensively utilized in deep learning algorithms for hand movement classification. This paper aims to introduce a novel method for hand gesture classification using sEMG data, addressing accuracy challenges seen in previous studies. We propose a U-Net architecture incorporating a MobileNetV2 encoder, enhanced by a novel Bidirectional Long Short-Term Memory (BiLSTM) and metaheuristic optimization for spatial feature extraction in hand gesture and motion recognition.

View Article and Find Full Text PDF

Introduction: Women with early bilateral salpingo-oophorectomy (BSO) have greater Alzheimer's disease (AD) risk than women with spontaneous menopause (SM), but the pathway toward this risk is understudied. Considering associative memory deficits may reflect early signs of AD, we studied how BSO affected brain activity underlying associative memory.

Methods: Early midlife women with BSO (with and without 17β-estradiol therapy [ET]) and age-matched controls (AMCs) with intact ovaries completed a face-name associative memory task during functional magnetic resonance imaging.

View Article and Find Full Text PDF

Targeting P4HA1 promotes CD8 T cell progenitor expansion toward immune memory and systemic anti-tumor immunity.

Cancer Cell

December 2024

Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), 60 Biopolis Street, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore. Electronic address:

Successful immunotherapy relies on both intratumoral and systemic immunity, which is yet to be achieved for most patients with cancer. Here, we identify P4HA1, encoding prolyl 4-hydroxylase 1, as a crucial regulator of CD8 T cell differentiation strongly upregulated in tumor-draining lymph nodes (TDLNs) and hypoxic tumor microenvironment. P4HA1 accumulates in mitochondria, disrupting the tricarboxylic acid (TCA) cycle through aberrant α-ketoglutarate and succinate metabolism, promoting mitochondria unfitness and exhaustion while suppressing progenitor expansion.

View Article and Find Full Text PDF

Origin stories: how does learned migratory behaviour arise in populations?

Biol Rev Camb Philos Soc

December 2024

Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, 1000 E University Ave, Laramie, Wyoming, 82071, USA.

Although decades of research have deepened our understanding of the proximate triggers and ultimate drivers of migrations for a range of taxa, how populations establish migrations remains a mystery. However, recent studies have begun to illuminate the interplay between genetically inherited and learned migrations, opening the door to the evaluation of how migration may be learned, established, and maintained. Nevertheless, for migratory species where the role of learning is evident, we lack a comprehensive framework for understanding how populations learn specific routes and refine migratory movements over time (i.

View Article and Find Full Text PDF

The differential outcomes procedure (DOP) is an easily applicable method for enhancing discriminative learning and recognition memory. Its effectiveness in improving the recognition of facial expressions of emotion has been recently explored, with mixed success. This study aims to explore whether the expectancies generated via the DOP are reflected as differences in event-related potentials (ERPs) between participants in differential (DOP) or non-differential conditions (NOP) in a facial expression of complex emotion label task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!