Background: Cluster of differentiation 36 (CD36) is a transmembrane glycoprotein involved in many biological processes, such as platelet biology, angiogenesis and in the aetiopathology of atherosclerosis and cardiovascular diseases. Toll-like receptors (TLRs) are one of the most important receptors of the innate immune system. Their main function is the recognition of conserved structure of microorganisms. This recognition triggers signaling pathways that activate transcription of cytokines and co-stimulatory molecules which participate in the generation of an immune response against microbes. In particular, TLR2 has been shown to recognize a broad range of ligands. Recently, we showed that CD36 serves as a co-receptor for TLR2 and enhances recognition of specific diacylglycerides derived from bacteria.
Methodology/ Principal Findings: Here, we investigate the mechanism by which CD36 contributes to ligand recognition and activation of TLR2 signaling pathway. We show that the ectodomain of murine CD36 (mCD36ED) directly interacts with negatively charged diacylglycerol ligands, which explains the specificity and selectivity of CD36 as a TLR2 co-receptor. We also show that mCD36ED amplifies the pro-inflammatory response to lipoteichoic acid in macrophages of wild-type mice and restores the pro-inflammatory response of macrophages from mice deficient in CD36 (oblivious), but not from mice deficient in cluster of differentiation 14 (CD14) (heedless). CONCLUSION/ SIGNIFICANCE: These data indicate that the CD36 ectodomain is the only relevant domain for activation of TLR2 signaling pathway and that CD36 and CD14 have a non-redundant role for loading ligands onto TLR2 in the plasma-membrane. The pro-inflammatory role of soluble CD36 can be relevant in the activation of the immune response against pathogens, as well as in the progression of chronic diseases. Therefore, an increased level of soluble forms of CD36, which has been reported to be increased in type II diabetic patients, could accelerate atherosclerosis by increasing the pro-inflammatory response to diacylglycerol ligands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760212 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007411 | PLOS |
Curr Top Behav Neurosci
January 2025
Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CBR) and type 2 (CBR) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.
View Article and Find Full Text PDFFront Pharmacol
October 2024
Department of Biomedical Sciences, School of Medicine, City University of New York, New York, NY, United States.
Dopamine stimulates CDP-diacylglycerol biosynthesis through D-like receptors, particularly the D subtype most of which is intracellularly localized. CDP-diacylglycerol regulates phosphatidylinositol-4,5-bisphosphate-dependent signaling cascades by serving as obligatory substrate for phosphatidylinositol biosynthesis. Here, we used acute and organotypic brain tissues and cultured cells to explore the mechanism by which extracellular dopamine acts to modulate intracellular CDP-diacylglycerol.
View Article and Find Full Text PDFNewborn (Clarksville)
March 2024
Global Newborn Society, Clarksville Maryland, United States of America.
Allergol Select
October 2024
Center for Child and Adolescent Health, Helios Hospital Krefeld, Academic Hospital of RWTH Aachen, Krefeld.
Colloids Surf B Biointerfaces
January 2025
School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!